提供一种用于检测水中重金属的微纳传感器,包括键合成一体的硅基片(21)与玻璃基片(1),玻璃基片(1)键合面上分别设置消解电极(3)及其阴极铂对电极(4)、检测电极(10)及其检测对电极(9)与Ag/AgCl参比电极(7),消解电极(3)包括消解基层与消解微柱阵列,检测电极(10)包括检测基层与检测微柱阵列,硅基片(21)键合面上在以上各电极相对应位置分别开设消解池(20)、阴极电极池(16)、检测池(19)、储液腔(17);构建水样消解处理和检测一体化微芯片,实现现场实际水样中重金属快速手持式检测和分析。
A micro nano sensor for the detection of heavy metals in water
【技术实现步骤摘要】
一种用于检测水中重金属的微纳传感器
本技术涉及一种用于检测水中重金属含量的微纳传感器,属于传感器
,也属于环境保护
本技术微纳传感器重金属电化学氧化消解与检测电极集成一体,实现重金属消解和检测同步进行。
技术介绍
近年来,随着我国工农业的快速发展和城市化进程的加速,大量工业废水排入江河、湖泊和水库中,导致很多地区出现了重金属污染物超标的问题,给自然环境和人类身体健康带来严重的危害。因此水体中重金属含量的快速检测分析对预防和处理水体的污染情况具有重要的意义。因水体环境较为复杂,在进行检测前需要进行水样预处理,常规的前处理方法需要加入大量的强酸并需要加热操作,耗时长。采用光谱法检测重金属等耗时长,且需要专门的大型设备,难以满足水体中重金属快速检测的需求。因此急需发展一种集水样前处理和检测于一体的传感器。完整的重金属分析检测包括以下几个过程:水样采集、水样前处理、分析测试、数据处理和分析。实际水样中重金属的存在形式多样,包括无机结合态、有机结合态、可过滤态和悬浮态,想测得总量,需将所有形态的重金属转为可测的形态,使得待测物中的待测金属以离子形式全部进入试样溶液中,所以水样前处理对检测结果的准确性起到尤为重要的作用。常规的水样前处理方法有酸消解法、MIBK萃取法、高锰酸钾-过硫酸钾消解法、微波消解法,这些方法需加入大量的强酸并需要加热操作,耗时长,难以满足水质快速前处理的需求。近年来,高级氧化技术(AOPs)应运而生并有了显著进展。AOPs是利用羟基自由基(·OH)氧化降解水相中的各种污染物的化学反应,该自由基具有极强的氧化电位,高达2.8V,仅次于F2。·OH一旦形成,会诱发一系列的自由基链反应,几乎无选择性地直接攻击水体中的各种污染物,直至降解为CO2、H2O和其他矿物盐,无二次污染。根据氧化剂和催化剂的不同,AOPs大体可分为以下七类:Fenton和类Fenton法;光化学氧化法和光催化氧化法;臭氧氧化法;超声氧化法;湿式(催化)氧化法;超临界水(催化)氧化法;电化学(催化)氧化法。其中电化学氧化技术(EAOPs)因效率高、设变简单易操作、便于自动化、无二次污染物产生等优点,得到了广泛关注。常规的重金属检测方法有:光谱法(原子吸收/发射光谱法(AAS/AES);原子荧光光谱法(AFS);电感耦合等离子发射光谱法(ICP-AES);X射线荧光光谱法(XRF))、电感耦合等离子体质谱分析法(ICP-MS)、色谱法(HPLC)等,这些方法的检测灵敏度和准确性高(~ng/L),但是样品前处理时间长、检测耗时且设备复杂昂贵。而电化学检测法因检测灵敏度高、选择性好,在重金属检测方面具有很大的优势,得到了广泛关注。综上所述,国内外对采用EAOPs进行水质前处理和电化学方法检测重金属均有研究,但是将二者集成在一起,即在前处理完成后直接进行原位快速检测的很少。面向环境水质现场快速检测的重大需求,将水样前处理和污染物成分快速检测集成是必然的发展趋势,是真正实现现场快速准确检测必需的技术手段。基于以上技术背景及实际需求,本专利基于微纳制造技术,制造集成样本电化学氧化消解和溶出伏安法检测功能的微纳电极阵列传感器,以及基于此传感器的水体中重金属快速消解和检测分析方法,用于实际水体中重金属现场快速、方便灵敏的检测和分析。
技术实现思路
本技术所要解决的技术问题是提供一种用于检测水中重金属的微纳传感器及其制作方法,及基于此电极的重金属离子检测方法,克服现有的重金属离子检测电极的缺点,提高检测灵敏度和缩短检测时间;此外提供一种重金属消解电极与三电极微纳传感器集成化制造,实现在线消解水体中各种组态重金属。为了解决上述技术问题,本技术微纳传感器所采用的技术方案为:一种用于检测水中重金属的微纳传感器,包括可与玻璃键合的表面为(100)晶面、双面抛光并氧化的硅基片(21),所述硅基片(21)上面以与其键合的方式覆盖有Pyrex7740玻璃基片(1),二者键合成一体;其特征在于,所述玻璃基片(1)键合面上分别设置用于将待测水样中各种组态重金属消解成离子态的消解电极(3)及其阴极铂对电极(4),用于检测消解后水样中重金属含量的检测电极(10)及其检测对电极(9)与Ag/AgCl参比电极(7),所述消解电极(3)包括厚度为纳米级的块状消解基层与设置其上面的消解微柱阵列,消解基层包括先后由lift-off工艺形成的块状铂基层与二氧化铅电镀层,每个消解微柱包括消解微柱芯与溅射在消解微柱芯表面的纳米金层;所述阴极铂对电极(4)为由lift-off工艺形成的厚度为纳米级的块状铂基层;所述检测电极(10)包括厚度为纳米级的块状检测基层与设置其上面的检测微柱阵列,检测基层包括由先后二次lift-off工艺形成的铂基层与金基层,每个检测微柱包括检测微柱芯与溅射在检测微柱芯表面的纳米金层;所述检测对电极(9)为由lift-off工艺形成的厚度为纳米级的开放环状铂层,环绕在检测电极(10)外周;所述玻璃基片(1)键合面上各电极还设置有由lift-off工艺形成的厚度为纳米级的铂电极引线(27)至玻璃基片(1)边缘;所述硅基片(21)键合面上在消解电极(3)、阴极铂对电极(4)、检测电极(10)、Ag/AgCl参比电极(7)相对应位置分别开设消解池(20)、阴极电极池(16)、检测池(19)、储液腔(17);消解池(20)、阴极电极池(16)之间开设通道槽(15),玻璃基片(1)在消解电极(3)、阴极铂对电极(4)之间处开设注入孔(5)与通道槽(15)相通,通道槽(15)内填有经注入孔(5)注入的饱和kcl琼脂溶胶;消解池(20)、阴极电极池(16)分别开设进水细槽(13)并交汇于总进水细槽(14),玻璃基片(1)上开设进水孔(2)与总进水细槽(14)相通;消解池(20)与检测池(19)之间开设中间细槽(22)作为消解后水样通道;所述玻璃基片(1)上开设有与所述储液腔(17)相通的注液孔(8),所述储液腔(17)中储存有经注液孔(8)注入的氯化钾饱和溶液,所述注液孔(8)用密封胶封装;检测池(19)与储液腔(17)之间多条纳米槽(18),作为待测水样与氯化钾饱和溶液相接触双方进行离子交换的纳米通道。以下为本技术微纳传感器进一步的方案:所述铂电极引线(27)至玻璃基片(1)键合面边缘处设置有由lift-off工艺形成的厚度为纳米级的块状焊点(12)用作对外接线,所述硅基片(21)键合面上分别与玻璃基片(1)键合面上的铂电极引线(27)、块状焊点相配,开设有引线嵌槽(29)与焊点凹坑(28),玻璃基片(1)与硅基片(21)二者键合后将外接引线插入焊点凹坑(28),灌满银浆后用密封胶封住,并烘干固化。所述硅基片(21)键合面上检测池(19)旁开设第一排水细槽(23),所述玻璃基片(1)上开设第一排水孔(11)与该第一排水细槽(23)相通。所述硅基片(21)键合面上阴极电极池(16)旁开设第二排水细槽(24),所述玻璃基片(1)上开设第二排水孔(6)与该第二排水细槽(24)相本文档来自技高网...
【技术保护点】
1.一种用于检测水中重金属的微纳传感器,包括可与玻璃键合的表面为(100)晶面、双面抛光并氧化的硅基片(21),所述硅基片(21)上面以与其键合的方式覆盖有Pyrex7740玻璃基片(1),二者键合成一体;其特征在于,所述玻璃基片(1)键合面上分别设置用于将待测水样中重金属消解成离子态的消解电极(3)及其阴极铂对电极(4),用于检测消解后水样中重金属含量的检测电极(10)及其检测对电极(9)与Ag/AgCl参比电极(7),所述消解电极(3)包括厚度为纳米级的块状消解基层与设置其上面的消解微柱阵列,消解基层包括先后由lift-off工艺形成的块状铂基层与二氧化铅电镀层,每个消解微柱包括消解微柱芯与溅射在消解微柱芯表面的纳米金层;所述阴极铂对电极(4)为由lift-off工艺形成的厚度为纳米级的块状铂基层;所述检测电极(10)包括厚度为纳米级的块状检测基层与设置其上面的检测微柱阵列,检测基层包括由先后二次lift-off工艺形成的铂基层与金基层,每个检测微柱包括检测微柱芯与溅射在检测微柱芯表面的纳米金层;所述检测对电极(9)为由lift-off工艺形成的厚度为纳米级的开放环状铂层,环绕在检测电极(10)外周;所述玻璃基片(1)键合面上各电极还设置有由lift-off工艺形成的厚度为纳米级的铂电极引线(27)至玻璃基片(1)边缘;所述硅基片(21)键合面上在消解电极(3)、阴极铂对电极(4)、检测电极(10)、Ag/AgCl参比电极(7)相对应位置分别开设消解池(20)、阴极电极池(16)、检测池(19)、储液腔(17);消解池(20)、阴极电极池(16)之间开设通道槽(15),玻璃基片(1)在消解电极(3)、阴极铂对电极(4)之间处开设注入孔(5)与通道槽(15)相通,通道槽(15)内填有经注入孔(5)注入的饱和kcl琼脂溶胶;消解池(20)、阴极电极池(16)分别开设进水细槽(13)并交汇于总进水细槽(14),玻璃基片(1)上开设进水孔(2)与总进水细槽(14)相通;消解池(20)与检测池(19)之间开设中间细槽(22)作为消解后水样通道;所述玻璃基片(1)上开设有与所述储液腔(17)相通的注液孔(8),所述储液腔(17)中储存有经注液孔(8)注入的氯化钾饱和溶液,所述注液孔(8)用密封胶封装;检测池(19)与储液腔(17)之间多条纳米槽(18),作为待测水样与氯化钾饱和溶液相接触双方进行离子交换的纳米通道。/n...
【技术特征摘要】
1.一种用于检测水中重金属的微纳传感器,包括可与玻璃键合的表面为(100)晶面、双面抛光并氧化的硅基片(21),所述硅基片(21)上面以与其键合的方式覆盖有Pyrex7740玻璃基片(1),二者键合成一体;其特征在于,所述玻璃基片(1)键合面上分别设置用于将待测水样中重金属消解成离子态的消解电极(3)及其阴极铂对电极(4),用于检测消解后水样中重金属含量的检测电极(10)及其检测对电极(9)与Ag/AgCl参比电极(7),所述消解电极(3)包括厚度为纳米级的块状消解基层与设置其上面的消解微柱阵列,消解基层包括先后由lift-off工艺形成的块状铂基层与二氧化铅电镀层,每个消解微柱包括消解微柱芯与溅射在消解微柱芯表面的纳米金层;所述阴极铂对电极(4)为由lift-off工艺形成的厚度为纳米级的块状铂基层;所述检测电极(10)包括厚度为纳米级的块状检测基层与设置其上面的检测微柱阵列,检测基层包括由先后二次lift-off工艺形成的铂基层与金基层,每个检测微柱包括检测微柱芯与溅射在检测微柱芯表面的纳米金层;所述检测对电极(9)为由lift-off工艺形成的厚度为纳米级的开放环状铂层,环绕在检测电极(10)外周;所述玻璃基片(1)键合面上各电极还设置有由lift-off工艺形成的厚度为纳米级的铂电极引线(27)至玻璃基片(1)边缘;所述硅基片(21)键合面上在消解电极(3)、阴极铂对电极(4)、检测电极(10)、Ag/AgCl参比电极(7)相对应位置分别开设消解池(20)、阴极电极池(16)、检测池(19)、储液腔(17);消解池(20)、阴极电极池(16)之间开设通道槽(15),玻璃基片(1)在消解电极(3)、阴极铂对电极(4)之间处开设注入孔(5)与通道槽(15)相通,通道槽(15)内填有经注入孔(5)注入的饱和kcl琼脂溶胶;消解池(20)、阴极电极池(16)分别开设进水细槽(13)并交汇于总进水细槽(14),玻璃基片(1)上开设进水孔(2)与总进水细槽(14)相通;消解...
【专利技术属性】
技术研发人员:金庆辉,戴金莹,尹加文,张赞,郜晚蕾,金涵,简家文,
申请(专利权)人:宁波大学,
类型:新型
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。