【技术实现步骤摘要】
基于无人机的实时动态车流量检测方法
本专利技术涉及车流量检测
,具体为基于无人机的实时动态车流量检测方法。
技术介绍
无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。无人机按应用领域,可分为军用与民用。军用方面,无人机分为侦察机和靶机。民用方面,无人机+行业应用,是无人机真正的刚需;目前在航拍、农业、植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄、制造浪漫等等领域的应用,大大的拓展了无人机本身的用途,发达国家也在积极扩展行业应用与发展无人机技术。现有技术的车流量检测通常是通过路面上一条基准线,统计经过这条基准线的车辆进行统计,但是不能统计出此路口处现在的车辆总数。为了解决以上问题我方研发出了基于无人机的实时动态车流量检测方法。
技术实现思路
本专利技术的目的就在于为了解决上述问题而提供基于无人机的实时动态车流量检测方法。本专利技术通过以下技术方案来实现上述目的:基于无人机的实时动态车流量检测方法,其特征在于,包括以下步骤:S1、数据采集;通过无人机,针对用户需求,对特有路段进行数据采集,数据采集是采集路面的正射影像图,进入下一步骤;S2、数据读取;每隔n帧取一次图像数据,进入下一步骤;S3、车辆检测;通过对神经网络的设计和对车辆数据的训练,形成权重模型,即为需要加载 ...
【技术保护点】
1.基于无人机的实时动态车流量检测方法,其特征在于,包括以下步骤:/nS1、数据采集;通过无人机,针对用户需求,对特有路段进行数据采集,数据采集是采集路面的正射影像图,进入下一步骤;/nS2、数据读取;每隔n帧取一次图像数据,进入下一步骤;/nS3、车辆检测;通过对神经网络的设计和对车辆数据的训练,形成权重模型,即为需要加载的模型,通过此模型,实现对图像数据中的车辆检测,进入下一步骤;/nS4、图像拼接;通过特征提取、特征匹配和图像融合进行图像拼接,进入下一步骤;/nS5、车辆去重;在图像融合后,以其中一帧上所有车辆目标为模板,通过SAD算法进行邻域去重,进入下一步骤;/nS6、如结束则得出车流量,如不结束则继续返回步骤S2。/n
【技术特征摘要】
1.基于无人机的实时动态车流量检测方法,其特征在于,包括以下步骤:
S1、数据采集;通过无人机,针对用户需求,对特有路段进行数据采集,数据采集是采集路面的正射影像图,进入下一步骤;
S2、数据读取;每隔n帧取一次图像数据,进入下一步骤;
S3、车辆检测;通过对神经网络的设计和对车辆数据的训练,形成权重模型,即为需要加载的模型,通过此模型,实现对图像数据中的车辆检测,进入下一步骤;
S4、图像拼接;通过特征提取、特征匹配和图像融合进行图像拼接,进入下一步骤;
S5、车辆去重;在图像融合后,以其中一帧上所有车辆目标为模板,通过SAD算法进行邻域去重,进入下一步骤;
S6、如结束则得出车流量,如不结束则继续返回步骤S2。
2.根据权利要求1所述的基于无人机的实时动态车流量检测方法,其特征在于,在步骤S1中,对无人机的飞行高度根据视野范围内的车辆数据进行调整。
3.根据权利要求1所述的基于无人机的实时动态车流量检测方法,其特征在于,在步骤S4中,特征提取是通过改进的sift(尺度不变特征转换)的算法进行,过程如下:
一、高斯模糊;
通过高斯模糊进行模糊图像;N维空间正态分布方程为:
其中,σ是正态分布的标准差;r为模糊半径;
二、构建高斯金字塔;
对图像进行不同尺度下的进行分层,总的层数n为:
n=log2{min(M,N)}-t,t∈[0,log2{min(M,N)})
其中,M,N分别为图像的宽和高;
三、高斯差分求极值;
D(x,y,σ)=(G(x,y,kσ)-G(x,y,σ))*I(x,y)
=L(x,y,kσ)-L(x,y,σ)
其中(x,y)为图像中的位置,表示横纵坐标点;L(x,y,kσ)为σ尺度下第k层的拉普拉斯核的卷积结果,G(x,y,σ)为σ尺度下第1层的高斯核卷积结果;G(x,y,kσ)为kσ尺度下第k层的高斯核卷积结果;
根据泰勒公式:
其中D(X)为X的函数表达,X=(x,y,σ)T;表示对X求偏导,表示对X求二次偏导,XT为X的转置;
求极值的条件为:
其中为离散函数的极值点,为的逆矩阵;
对应极值点方程为:
为X在极值点处值,为离散函数的极值点,为的逆矩阵;
四、消除边缘响应;
剔除不稳定的边缘响应点;获取特征点处的Hessian矩阵,主曲率通过一个2x2的Hessian矩阵H求出:
其中H为Hessian矩阵,DXX为x方向上的二阶导数,DXY为先在x方向上求导,然后y方向求导,DYY为y方向上的二阶导数;
H的特征值α和β代表x和y方向的梯度,H的迹和行列式计算方式为:
Tr(H)=Dxx+Dyy=α+β,
Det(H)=DxxDyy-(Dxy...
【专利技术属性】
技术研发人员:刘洋,时翔,敬皓,唐柯,赵赞,
申请(专利权)人:成都携恩科技有限公司,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。