【技术实现步骤摘要】
一种基于视觉的车道线检测方法及装置
:本专利技术涉及一种基于视觉的车道线检测方法及装置。
技术介绍
:若想实现辅助驾驶或无人自动驾驶,从视觉的角度上讲都要先学会观察道路,直接有用的方法就是检测车道线。车道线检测相对于其他交通标志来说检测还是比较容易的,然而由于车辆速度造成图像模糊,光照变化、物体遮挡、污渍等影响图像质量,或由于摄像机拍摄角度变化使得所获取的标志线会发生严重的变形,从而影响车道线识别的准确性。车道线检测的方法主要分为基于区域的检测方法、基于边缘的检测方法、基于深度学习的检测方法;基于区域的方法将车道线识别问题定义为分类问题,即将道路图像分成车道线部分和非车道线部分,其必须克服噪声的存在,如阴影、积水和道路污渍等,且分类器所花费的时间一般较大。这种方法在建立道路参数模型的基础上,分析图像中的目标信息后计算得到模型参数;该方法优点是不受地面状况干扰,缺点是计算复杂度较高,算法的时间开销较大,实时性较差。基于边缘的方法是在获取道路场景的边缘图后,针对结构化道路较强的几何特征,利用二维或三维曲线建立车道线模型;在特定的结构化道路场景下,这种方法常常能达到满意的效果。面对复杂的驾驶环境,检测效果往往不稳定,漏检和误检的情况普遍发生。基于深度学习的检测方法是比较前沿的科研技术,建立一个深度学习模型将大大解决车道线复杂场景下的特征提取不稳定问题。但如何建立一个适合的模型以及后续处理仍是一个不小的难题,并且这种方法暂不能满足车载实时性的要求。
技术实现思路
:本专利技术的目的是提供一种充分利 ...
【技术保护点】
1.一种基于视觉的车道线检测方法,其特征是:本检测方法包括六步,第一步预处理模块,第二步特征提取模块,第三步模型拟合模块,第四步车道线提炼处理模块,第五步跟踪预测模块,第六步车道线检测输出参数结构化。/n
【技术特征摘要】
1.一种基于视觉的车道线检测方法,其特征是:本检测方法包括六步,第一步预处理模块,第二步特征提取模块,第三步模型拟合模块,第四步车道线提炼处理模块,第五步跟踪预测模块,第六步车道线检测输出参数结构化。
2.根据权利要求1所述的一种基于视觉的车道线检测方法,其特征是:所述的第一步预处理模块是包括图像的灰度化、图像的平滑和增强处理技术,图像的灰度化技术是利用车道线的普遍特征,最大程度的突出灰度化后车道线的灰度值;采用符合人们视觉认知的加权平均算法处理彩色RGB图像和灰度图像的对应关系表示为公式(4-1);
Gray=R×0.299+G×0.587+B×0.114(公式4-1)
对灰度图像的平滑和增强处理中,进行以获得灰度对比度明显,背景暗淡,车道线轮清晰的图像,降低图像处理过程中的复杂程度;用中值滤波剔出噪点。
3.根据权利要求1所述的一种基于视觉的车道线检测方法,其特征是:所述的第二步特征提取模块是车道线标志有着明显的上升沿和下降沿,在提取特征点的时候需要在上升沿和下降沿各提取一个点组成一个点对;车道线特征点属于与相邻像素灰度值差值较大的跳变点,采用局部梯度方法去提取地面标识特征点,先计算像素点水平线附近的均值,评估该像素灰度值的强度水平,当该像素附近的灰度强度太高或太低的时候,车道线与地面的灰度梯度就会变小;灰度平均值的计算公式(4-2)所示,
然后再计算边缘的升变点ep和降变点ev,满足公式(4-3)条件,
要求地面标识特征点是由相邻的上升沿点和下降沿点组成的点对,并且之间满足一定的距离,满足公式(4-4),
Δw=ep(x)-ev(x)>W(公式4-4)
定义车道线的特征点f(x)为成对的ep(x)和ev(x)的平均值,即公式(4-5),
f(x)=(ep(x)+ev(x))/2(公式4-5)。
4.根据权利要求1所述的一种基于视觉的车道线检测方法,其特征是:所述的第三步模型拟合模块是根据结构化道路约束假设,建立车道线模型,将车道线视野分为近视野、中视野和远视野三部分,其中,近视野和中视野区域以直线模型进行匹配,远视野区域则采用加权双曲线拟合模型,在直线拟合模型中,设计出用一种结合两种算法优点的直线检测方法;首先,利用霍夫变换确定直线存在的大致范围,然后对每个区域内的特征点集,采用改进的最小二乘法得到精确的直线参数,在曲线拟合之前,建立曲线目标像素点集合;目标像素集合中的每一个像素点都应满足以下两个条件:一是尽量多的处于车道线上,二是集合中点的数量足够充实,只有足够的数据量才能减少误差像素带来的干扰;以直线检测的参数为基础,依靠直线检测的高准确率来估计远视野中车道线目标像素点提取的准确性;以直线上端点的像素点作为搜索的起始种子点,从起始种子点开...
【专利技术属性】
技术研发人员:李超,王若瑜,
申请(专利权)人:苏州天瞳威视电子科技有限公司,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。