本发明专利技术属于3D微制造领域,涉及一种利用激光直写技术构建3D微纳通道结构的方法。所述的制备方法包括:以水凝胶作为支架,通过双光子激光直写技术构建3D结构;在构建的微结构上连接疏水大分子并载入油性成分;经各向同性缩水和脱水后,再通过去垢剂除去油性成分,从而获得可达到纳米尺度的中空网络结构。通过该方法可构建几十纳米精细度的有序微纳孔通道,在开发光电子器件、纳米元件、传感器、生物医学等领域具有极大的潜力。
A method of constructing 3D microchannel structure by laser direct writing technology
【技术实现步骤摘要】
一种利用激光直写技术构建3D微纳通道结构的方法
本专利技术属于3D微制造
,具体涉及一种利用激光直写技术构建3D微纳通道结构的方法。
技术介绍
:激光直写技术,作为一种重要的先进制造技术已广泛应用于各种工业制造领域。利用激光直写技术进行材料加工时,其所能达到的加工分辨率一直受到经典光学理论衍射极限的限制,难于进行纳米尺度的加工。其中,作为新的激光加工技术即多光子飞秒脉冲激光加工,可以在超快过程中获得微纳尺度的加工分辨率,已用于发展先进的微纳米加工技术,近年来已成为国际上的研究热点。双光子聚合的微纳制造技术,与现有的其他工艺相比,双光子聚合能够制造更高分辨率的三维微纳结构。根据阿贝衍射极限,聚焦激光的分辨率被限定在所使用的光的波长和聚焦物镜的数值孔径(NA),基于单光子聚合的微立体光刻难以达到亚微米分辨率。双光子聚合技术已经被用于光子学、微光子学、微流道、生命科学、微纳科技等许多领域,尤其在生物医学和纳米科技等领域已经显示出巨大潜能和广阔的工程应用前景。利用双光子激光聚合,可以使物质在发生双光子吸收后引发的一种光聚合过程,使一个分子同时吸收两个光子,而双光子吸收的发生主要在脉冲激光所产生的超强激光焦点处,光路上其它地方的激光强度不足以产生双光子吸收,并且由于所用光波长较长,能量较低,相应的单光子吸收过程不能发生。此外,双光子吸收是一种非线性现象,如果辐照足够高并且在基态和激发态之间的跃迁能与两个光子的结合能相匹配,任何材料都能发生双光子吸收。因此,双光子过程具有良好的空间选择性。这种双光子聚合激光直写3D打印技术,多用于构建实心的微纳结构,特别是在柔性材料内部,大多只能获得非支撑性的实心3D结构。目前,仍没有关于双光子激光直写技术应用于构建柔性微纳中空网络结构的报道。然而,现有的能实现3D打印通道结构的技术,在精细度上有很大的局限,不能获得纳米级别甚至几个微米范围内的拓扑中空结构,且过程繁琐只能适用于有限的打印材料。如果能微纳尺度上构建3D中空结构,将在开发光电子器件、纳米元件、传感器、生物医学等领域具有极大的应用潜力,也是目前3D打印微纳技术的难题和挑战之一。
技术实现思路
本专利技术针对现有技术的不足,目的在于提供一种利用激光直写技术构建3D微纳通道结构的方法。为了实现上述目的,本专利技术所采取的技术方案为:一种利用激光直写技术构建3D微纳通道结构的方法,所述的3D微纳通道结构首先通过激光直写技术在水凝胶支架中打印3D通道图案,然后通过化学改性和物理吸附获得牺牲型油性结构,之后依次脱水并除去油性结构后最终形成具有内部中空的有序微纳通道结构。具体的,所述的利用激光直写技术构建3D微纳通道结构的方法,包括如下步骤:(1)制备水凝胶基底柔性材料:将水凝胶前体溶液与交联剂、催化剂和引发剂混合,置于37℃温度下成胶,并置于纯水中膨胀成数倍体积;(2)将步骤(1)膨胀后的水凝胶置于功能性荧光团溶液中1小时,使染料完全渗透进水凝胶内部;(3)通过绘图软件制备不同材料结合的结构区域的模型文件,导入成像软件中;(4)3D双光子激光打印:将步骤(2)中荧光染料处理的水凝胶置于飞秒激光双光子加工平台上,利用软件控制平台移动,将设计好的3D结构利用双光子激光直写技术,以780nm波长飞秒激光作为光源,将荧光团分子结合在水凝胶骨架上;(5)将步骤(4)的水凝胶取出,用纯水多次冲洗除去残留的荧光溶液后,加入可与荧光团分子反应的双亲分子,孵育3小时形成亲油的3D微图案;(6)将步骤(5)的水凝胶用纯水多次冲洗除去残留成分后浸没于有机油溶液中,再浸没于0.5-1M的氯化钙溶液中,通过缩水和3D微图案对油性分子的吸附,获得油性牺牲型结构;(7)将步骤(6)获得的水凝胶置于含有去垢剂的浓度为5M的氯化钙溶液中,除去所有水分和油性分子,从而获得中空的微纳结构支架。优选的,步骤(1)中所述的水凝胶前体溶液成分为丙烯酰胺、丙烯酸钠、氯化钠、PBS和纯水的混合溶液;其中氯化钠浓度为2M,以及2mL的10xPBS、3.5mL的纯水混合均匀的混合溶液,其中丙烯酰胺和丙烯酸钠浓度为1-30%,质量比为1:5~5:1;氯化钠浓度为2M,PBS为1X。优选的,步骤(1)中所述的交联剂为N,N'-亚甲基双丙烯酰胺,其在混合溶液中的浓度为0.01-1%(w/w);所述催化剂为过硫酸铵,其在混合溶液中的浓度为0.1-0.5%(w/w);所述引发剂四甲基乙二胺,其在混合溶液中的浓度为0.1-0.5%(v/v)。优选的,步骤(2)中所述功能性荧光团溶液为Fluorescein-NHS、Fluorescein-SH、Fluorescein-NH2、Fluorescein-DBCO、Fluorescein-azide或Fluorescein-4-biotin,所述溶液的浓度为0.1-2mM。优选的,步骤(5)中所述的双亲分子为具有Melamine-、NHS-、azide-、DBCO-或streptavidin-活化的油酸-PEG、亚油酸-PEG、十八胺-PEG、十二烷基-PEG中的一种,所述双亲分子浓度为1-10%(w/v)。优选的,步骤(6)中所述的有机油溶液为油酸、亚油酸、三油酸甘油酯、液体石蜡、石油醚或全氟辛酸中的一种或几种。优选的,步骤(7)中所述的去垢剂为Tween20、Pluronic127或Brij35中的一种。与现有技术相比,本专利技术具有以下积极效果:(1)本专利技术所述的一种基于激光直写技术的3D微纳通道结构,内部为中空结构,具有整体连通性,且机械强度和力学性能优良;(2)本专利技术设备简单、结构构建效率高、无需掩模或模具可直接成形,加工精细度可达到微纳尺度;(3)本专利技术所述的一种基于激光直写技术的3D微纳通道结构,有别于以往在硬性材质例如树脂等上构建的3D中空结构,本技术首次利用水凝胶作为柔性基底材料来构建该结构,给开发柔性光电子器件、纳米元件、生物传感器等方向带来极大的可能性。附图说明图1为本专利技术实施例1中设计的3D网络结构示意图;图2为本专利技术实施例1中实际水凝胶中空网络结构的3D荧光示意图;图3位本专利技术实施例2中构建的中空结构的明场和荧光图。具体实施方式实施例1一种利用激光直写技术构建3D微纳通道结构的方法,包括如下步骤:(1)制备水凝胶基底柔性材料:将3.5g丙烯酸钠、1g丙烯酰胺、3mgN,N'-亚甲基双丙烯酰胺、8mL的2M氯化钠以及2mL的10xPBS、3.5mL的纯水混合均匀;随后取1mL的上述混合溶液,与20μL的10%(v/v)四甲基乙二胺、20μL的10%(w/v)过硫酸铵混合,置于37℃温度下反应1小时成胶,并置于纯水中膨胀成数倍体积;(2)将步骤(1)膨胀后的水凝胶切成2cm边长的正方块状,置于浓度为500μM的Fluorescein-NH2o溶液中1小时,使染料完全渗透进水凝胶内部;
...
【技术保护点】
1.一种利用激光直写技术构建3D微纳通道结构的方法,其特征在于,所述的3D微纳通道结构首先通过激光直写技术在水凝胶支架中打印3D通道图案,然后通过化学改性和物理吸附获得牺牲型油性结构,之后依次脱水并除去油性结构后最终形成具有内部中空的有序微纳通道结构。/n
【技术特征摘要】
1.一种利用激光直写技术构建3D微纳通道结构的方法,其特征在于,所述的3D微纳通道结构首先通过激光直写技术在水凝胶支架中打印3D通道图案,然后通过化学改性和物理吸附获得牺牲型油性结构,之后依次脱水并除去油性结构后最终形成具有内部中空的有序微纳通道结构。
2.根据权利要求1所述的利用激光直写技术构建3D微纳通道结构的方法,其特征在于,包括如下步骤:
(1)制备水凝胶基底柔性材料:将水凝胶前体溶液与交联剂、催化剂和引发剂混合,置于37℃温度下成胶,并置于纯水中膨胀成数倍体积;
(2)将步骤(1)膨胀后的水凝胶置于功能性荧光团溶液中1小时,使染料完全渗透进水凝胶内部;
(3)通过绘图软件制备不同材料结合的结构区域的模型文件,导入成像软件中;
(4)3D双光子激光打印:将步骤(2)中荧光染料处理的水凝胶置于飞秒激光双光子加工平台上,利用软件控制平台移动,将设计好的3D结构利用双光子激光直写技术,以780nm波长飞秒激光作为光源,将荧光团分子结合在水凝胶骨架上;
(5)将步骤(4)的水凝胶取出,用纯水多次冲洗除去残留的荧光溶液后,加入可与荧光团分子反应的双亲分子,孵育3小时形成亲油的3D微图案;
(6)将步骤(5)的水凝胶用纯水多次冲洗除去残留成分后浸没于有机油溶液中,再浸没于0.5-1M的氯化钙溶液中,通过缩水和3D微图案对油性分子的吸附,获得油性牺牲型结构;
(7)将步骤(6)获得的水凝胶置于含有去垢剂的浓度为5M的氯化钙溶液中,除去所有水分和油性分子,从而获得中空的微纳结构支架。
3.根据权利要求2所述的方法,其特征在于,步骤(1)中所述的水凝胶前体溶液成分为丙烯...
【专利技术属性】
技术研发人员:吴苏州,杨高洁,李晓云,
申请(专利权)人:深圳市晶莱新材料科技有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。