The invention discloses a method and a device for acquiring training sample data based on indoor environmental monitoring, the method includes: collecting a variety of indoor environmental monitoring data; unifying the sampling interval of the variety of indoor environmental monitoring data; normalizing the indoor environmental monitoring data after the unified sampling interval, and taking the indoor environmental monitoring data after the normalization as an artificial spirit Training sample data through network. The training sample data acquisition method provided by the invention includes collecting indoor environment monitoring data, preprocessing and normalizing the data, obtaining the training sample data for training the artificial neural network, the training sample data can accelerate the learning speed of the artificial neural network, improve the convergence speed of the artificial neural network, and fully meet the requirements of the artificial neural network Training requirements.
【技术实现步骤摘要】
基于室内环境监测的训练样本数据获取方法及装置
本专利技术涉及数据处理
,具体涉及一种基于室内环境监测的训练样本数据获取方法及装置。
技术介绍
工业技术的发展,尤其是化工原料、新型材料等的使用,使得环境污染日益严重,直接影响了人们的日常健康。出于工作和生活的需要,人们大部分的时间在室内停留,而现代大楼建设过程中,出于节能或方便管理等多方面考虑,自然通风不再是主要换气手段,通风换气、室内温度等环境要素控制主要依靠新风系统配合空调系统完成。现有技术大楼的新风系统多采用集中控制、工作模式单一,而空调多数情况下仍需手动控制,不能根据室内空气质量给出智能的控制方案,达不到即节能又舒适的效果。其重要原因是未能实现对环境信息进行有效分析评估以作为控制依据。随着科技的发展,环境监测设备布置得越来越广泛,所产生的大量数据未能得到有效的评估。为了减少空气环境不良对生活质量和工作效率的影响,对室内空气质量的评估分析具有重要的实用价值。针对空气质量的分析评估,近年来研究颇多,但多是针对室外大环境开展,比如分析空气质量的基本趋势、进行PM2.5短期浓度动态预报等,针对室内空气监测的数据的评估分析较少。室内空气监测传感器由不同种类的异质传感器构成,具有多样性。利用机器学习技术通过人工神经网络实现对空气质量的分析评估具有普遍适用性。利用人工神经网络进行室内空气质量分析评估,首先要获取训练样本数据以便对人工神经网络进行训练,现在亟待进行该方面的研究。
技术实现思路
本专利技术的一个目的是提供一种训练样本数据获取的新的 ...
【技术保护点】
1.一种基于室内环境监测训练样本数据获取方法,其特征在于,包括:/n采集多种室内环境监测数据;/n统一所述多种室内环境监测数据的采样间隔;/n对统一采样间隔之后的室内环境监测数据进行归一化处理,将归一化处理后的室内环境监测数据作为人工神经网络的训练样本数据。/n
【技术特征摘要】
1.一种基于室内环境监测训练样本数据获取方法,其特征在于,包括:
采集多种室内环境监测数据;
统一所述多种室内环境监测数据的采样间隔;
对统一采样间隔之后的室内环境监测数据进行归一化处理,将归一化处理后的室内环境监测数据作为人工神经网络的训练样本数据。
2.根据权利要求1所述的方法,其特征在于,所述统一所述多种室内环境监测数据的采样间隔包括:采用二次多项式对统一后的采样间隔进行拟合插值或插值后抽取。
3.根据权利要求1所述的方法,其特征在于,所述对室内环境监测数据进行归一化处理包括:利用分量白化方法对室内环境监测数据进行数据归一化处理。
4.根据权利要求1所述的方法,其特征在于,所述对室内环境监测数据进行归一化处理,包括:
设室内环境监测数据的数据集X由P个样本组成,每个样本有J个分量,x表示样本的分量;表示数据集X的第p(1≤p≤P)个样本的第j(1≤j≤J)个分量,表示归一化后的样本的分量;表示归一化后的数据集的第p个样本的第j个分量,采用分量白化方法对数据进行归一化,分量白化后得到:
其中数据集X的第p个样本的所有分量的平均值标准差σj由计算公式为:
5.一种人工神经网络训练方法,其特征在于,包括:
向人工神经网络输入通过权利要求1-3任一项所述方法获取的训练样本数据;
采用回弹后向传播算法对所述人工神经网络进行训练;所述人工神经网络包括输入层、隐含层和输出层。
6.根据权利要求5所述的方法,其特征在于,所述采用回弹后向传播算法对所述人工神经网络进行训练包括:
设所述人工神经网络的输出层具有M个神经元,所述训练样本数据包含P个输入样本...
【专利技术属性】
技术研发人员:贾琳,赵磊,
申请(专利权)人:特斯联北京科技有限公司,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。