一种基于负压吸收原理的浆果采摘方法及动力源额定输出压力值确定方法技术

技术编号:22174939 阅读:50 留言:0更新日期:2019-09-25 00:02
本发明专利技术提供负压吸收浆果采摘方法中树体内部流场变化模型,即

A berry picking method based on negative pressure absorption principle and a method to determine the rated output pressure of power source

【技术实现步骤摘要】
一种基于负压吸收原理的浆果采摘方法及动力源额定输出压力值确定方法
本专利技术涉及浆果机械采摘方法,具体涉及一种基于负压吸收原理的浆果全自动机械化采摘方法,尤其是关于动力源额定输出压力值确定方法。
技术介绍
随着国民经济的快速发展,人们追求高品质的生活,对高档水果的需求与日俱增,浆果类水果就是其中一类。虽然大多数浆果美味可口且具有较好的医疗保健效果,灌木类浆果虽然产量大,但浆果树果实分批成熟,采摘时机较短,且保鲜要求较高,野外的鸟类如灰喜鹊等对成熟浆果的偷食较为泛滥,因此在浆果成熟后需要尽快采摘,采摘过程要求小心操作,避免损伤。目前,浆果常见的采摘方式分为人工采摘和机械化采摘两种,两种采摘方式各有优劣。以蓝莓为例,美国农业部有研究表明人工采摘的成本约为$1.58/kg,机械采摘的成本约为$0.40/kg,而现有机械化采摘技术中以振动激励采收的方式为主,通过对树枝树干进行振动激励,间接地带动浆果果实振动,浆果在惯性力的作用下掉落。由于是对树体进行直接机械接触,目前的机械采收技术极大可能存在着对浆果树造成损伤,有降低产量的潜在风险。因此避免直接接触进行机械采收是目前技术需要克服的难点。但是,对于负压吸收浆果的采摘方法,如何确定动力源额定输出压力值是个难点。
技术实现思路
针对上述技术中存在的问题,本专利技术提出了一种负压吸收浆果采摘方法中树体内部流场变化模型,它为确定动力源额定输出压力值提供了基础。负压吸收浆果采摘方法中树体内部流场变化模型为:其中,吸收动力源中的吸头贴合树体表面进行吸收浆果作业,吸头的额定输出压力值P0、额定输出风速u0;x轴水平,原点在吸头的进风口,以树体表面指向树干为正方向;k0为气体压缩系数,空气密度为ρ0,压力值P为树体内部x轴上某点处的压力值;树体疏密程度系数k;对浆果树进行风场试验,测量树体表面初始风速u1、树体内部x轴上某点处的风速u、该点的x坐标值,根据风速位移函数u=u1·e-kx求得树体整体疏密程度系数k。本专利技术同时提供了一种负压吸收浆果采摘方法中动力源额定输出压力值确定方法,包括下述步骤:(1)建立上述的内部流场变化模型;(2)假设树体内部各处疏密程度均匀不变,对浆果树进行风场试验,测量树体表面初始风速u1、树体内部x轴上某点处的风速u、该点的x坐标值,根据风速位移函数u=u1·e-kx求得树体疏密程度系数k;(3)采集树体树形曲线和底边边长D的特征,建立以树高y为自变量的树体树形曲线函数f(y);(4)将步骤(2)得到的树体疏密程度系数k代入式(1);根据某处树高y得到此处f(y)值,依据统计得到该处对应的成熟浆果层厚度t(f(y));成熟浆果层厚度t(f(y))即为式(1)中的x,根据成熟浆果层厚度t(f(y))和额定输出风速u0,以式(1)求出压力稍大于成熟浆果果柄结合力的成熟浆果负压采摘的额定输出压力值P0。上述的动力源额定输出压力值确定方法,不同品种成熟浆果层厚度函数t(f(y))采用最小二乘法对统计数据进行拟合得到。上述的动力源额定输出压力值确定方法,对浆果树进行风场试验时,使用网将浆果树笼罩束缚。这样是为满足考虑树体疏密程度的内部流场变化模型中树体内部疏密程度均匀不变的假设。上述的动力源额定输出压力值确定方法,对浆果树进行风场试验时,进行多组试验,以各组得到的树体疏密程度系数的平均值作为树体疏密程度系数k。这样可以提高数据可靠性。上述的动力源额定输出压力值确定方法,使用相机对浆果树进行拍照,正对着树干拍摄,采集树体树形曲线和底边边长D的特征图片,通过图像处理技术得到建立以树高y为自变量的树体树形曲线函数f(y);根据相机所在位置高度y得到此处f(y)值。通过图像处理技术得到浆果树轮廓的数据模型,为成熟浆果层厚度t(f(y))计算和吸头轨迹规划奠定数据基础,效率较高且数据比较准确。本专利技术同时提供一种基于负压吸收原理的浆果机械化采摘方法。本专利技术的基于负压吸收原理的浆果机械化采摘方法,是根据上述方法得到的输出压力值P0和额定输出风速u0对浆果树进行采摘作业,吸头行走轨迹按照一定的规律遍历整个树体模型曲面,完成对成熟浆果的采摘。对于上述的基于负压吸收原理的浆果机械化采摘方法,考虑到实际操作环境存在某些不可控因素会导致实际作用的负压值低于计算值,给输出压力值乘上安全系数τ,得到实际作业输出压力值(即考虑安全系数的修正后的P0)。该方法解决了非接触式机械采收的难题。本专利技术的有益效果:本专利技术通过建立考虑树体疏密程度的内部流场变化模型,对网笼罩的浆果树进行图像处理,使用统计方法得到不同品种浆果成熟层厚度函数,应用所建模型得到成熟浆果负压采摘的最佳压力值,实现对浆果的非接触式自动采收,同时也满足了对浆果进行分成熟批次采收的需求。附图说明图1为浆果树轮廓模型曲线图;图2是浆果层厚度t(f(y))等示意图;图3是对使用相机对浆果树进行拍照的示意图;图4为浆果树采摘试验装置原理示意图。具体实施方式为了详细说明本专利技术公开的技术方案,下面结合说明书附图和具体实施例做进一步的阐述。本专利技术提供的一种基于负压吸收原理的浆果全自动机械化采摘方法的考虑树体疏密程度的内部流场变化模型原理如下。参见图1,以树干轴线为y轴(纵轴)建立坐标系,横轴与y轴垂直,原点为树干与地面交点。假设浆果树高H,地面边长为D,纵截面的树形曲线函数已知为f(y),动力源额定输出压力值P0,额定输出风速u0,吸头贴合树体表面进行采摘作业,树体内外的空气密度均匀为ρ0,树体疏密程度均匀不变,流场温度不变。取任一水平截面研究压力变化:参见图2,设立x轴,x轴水平,原点在吸头的进风口,以树体表面指向树干为正方向;气流穿过树体的速度逐渐减弱,树体内距离树体表面x处一点的风速u,通过微小位移dx,风速下降du,则有du与u,dx成正比,故du=-kudx对上式进行积分,得风速位移函数,u=u0·e-kx式中,k为树体疏密程度系数。根据伯努利方程列出树体表面流场状态与树体内一点距离树体表面x处流场状态关系方程,根据气体密度方程得出,式中,k0为气体压缩系数。这里T=T0,故将u=u0·e-kx和代入到状态关系方程中,得具体的,一种基于负压吸收原理的浆果全自动机械化采摘方法,包括以下步骤:(1)对网笼罩的浆果树进行风场试验,测量树体表面初始风速与水平截面上树体内部到树体表面距离为x的某点处的风速,根据风速位移函数u=u0·e-kx求得树体疏密程度系数k;(2)使用相机对浆果树进行拍照,见图3,正对着树干拍摄,可以采集树体树形曲线函数f(y)和底边边长D的特征图片,并以此在建立树体模型f(y);(3)将步骤(2)和(3)中得到的k和f(y)代入(1)中的内部流场变化模型,根据成熟浆果层厚度t(f(y))和额定输出风速u0,求出压力稍大于成熟浆果果柄结合力的成熟浆果负压采摘的最佳输出压力值P0;(4)以此输出压力值P0和额定输出风速u0对浆果树进行采摘作业,吸头行走轨迹按照一定的规律遍历整个树体模型曲面,完成对成熟浆果的采摘。下面以蓝莓树为试验对象进行成熟蓝莓负压采摘的最佳压力值计算来验证方法可行性。首先获取某种蓝莓树某一截面的树形曲线函数值f(y)、该蓝莓品种成熟果层厚度值t(f(y))及成熟果实直径,分别为1.3m,0.1m,0.本文档来自技高网...

【技术保护点】
1.负压吸收浆果采摘方法中树体内部流场变化模型为:

【技术特征摘要】
1.负压吸收浆果采摘方法中树体内部流场变化模型为:其中,动力源中的吸头贴合树体表面进行吸收浆果作业,吸头的额定输出压力值P0、额定输出风速u0;x轴水平,原点在吸头的进风口,以树体表面指向树干为正方向;k0为气体压缩系数,空气密度为ρ0,压力值P为树体内部x轴上某点处的压力值;树体疏密程度系数k;对浆果树进行风场试验,测量树体表面初始风速u1、树体内部x轴上某点处的风速u、该点的x坐标值,根据风速位移函数u=u1·e-kx求得树体整体疏密程度系数k。2.负压吸收浆果采摘方法中动力源额定输出压力值确定方法,包括下述步骤:(1)建立权利要求1所述的树体内部流场变化模型:(2)假设树体内部各处疏密程度均匀不变,对浆果树进行风场试验,测量树体表面初始风速u1、树体内部x轴上某点处的风速u、该点的x坐标值,根据风速位移函数u=u1·e-kx求得树体疏密程度系数k;(3)采集树体树形曲线和底边边长D的特征,建立以树高y为自变量的树体树形曲线函数f(y);(4)将步骤(2)得到的树体疏密程度系数k代入式(1);根据某处树高y得到此处f(y)值,依据统计得到该处对应的成熟浆果层厚度t(f(y));成熟浆果层厚度t(f(y))即为式(1)中的x,根据成熟浆果层厚度t(f(y))和额定输出风速u0,以式(1)求出压力稍大于成熟浆果果柄结合力的成熟浆果负压采摘的额定输出压力值P0。3.如权利要求2所述...

【专利技术属性】
技术研发人员:黄玉萍王德政刘英缑斌丽周海燕
申请(专利权)人:南京林业大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1