一种泥页岩有机孔隙与无机孔隙自动识别方法及系统技术方案

技术编号:22077985 阅读:83 留言:0更新日期:2019-09-12 14:56
本发明专利技术公开了一种泥页岩有机孔隙与无机孔隙自动识别方法及系统。该方法包括:利用泥页岩扫描电镜灰度图中像素点个数随灰度值变化的关系曲线,确定有机质峰、主矿物峰和亮色矿物峰分别对应的灰度值和峰宽;计算第一孔隙灰度截止值、干酪根灰度截止值和亮色矿物灰度截止值;采用各截止值对泥页岩扫描电镜灰度图进行阈值分割,得到初始孔隙图、初始干酪根孔隙图和亮色矿物图;依据初始孔隙图、初始干酪根孔隙图和亮色矿物图,得到无机矿物孔隙图和干酪根区域图;对泥页岩扫描电镜灰度图按照预设阈值进行图像分割,得到第一孔隙图;依据干酪根区域图、第一孔隙图和标定图,确定有机孔隙图。本发明专利技术能提高泥页岩有机孔隙与无机孔隙的识别精度。

A Method and System for Automatic Recognition of Organic and Inorganic Pores in Mudstone

【技术实现步骤摘要】
一种泥页岩有机孔隙与无机孔隙自动识别方法及系统
本专利技术涉及矿物孔隙识别
,特别是涉及一种泥页岩有机孔隙与无机孔隙自动识别方法及系统。
技术介绍
扫描电镜是一种应用高能电子在样品表面进行扫描的技术,它能有效的反应样品表面的形貌特征。二次电子的分辨率一般在5~10nm,在低于表面的区域(如孔隙),其亮度会较边缘的区域暗一些,且边缘会积累电荷,十分明亮,形成一圈亮边。传统孔隙提取的方式是通过人工手绘、阈值法、边缘提取法、分水岭法,在一定程度上提取孔隙。人工手绘法的结果因为操作人员的地质经验的不同而差异很大,且页岩中小孔隙众多,一张页岩扫描电镜图片中的微小孔隙动辄几千甚至数万个孔隙,工作量巨大(一套连续拍的扫描电镜图能达到几十甚至上千张),十分耗时,且在手绘过程中操作人员很容易忽略一些微小孔隙。该方法不易处理大量图片,在定性或半定量的页岩孔隙评价中应用广泛。阈值法是一种利用一个灰度值将泥页岩SEM灰度图片分为孔隙和背景区域的方法,由于扫描电镜在孔隙区域颜色较暗。因此可以将灰度低于阈值的区域定为孔隙,将灰度高于阈值的区域定为背景。阈值法由于操作简便,广泛应用于对扫描电镜的处理。但由于页岩中干酪根及暗色矿物的存在,很容易将干酪根与暗色矿物区域识别为孔隙而造成误差。且一些较浅的大孔,其内部亮度值较高,整体颜色较亮;内部粗糙不平的大孔,其内部明暗不一,也很容易将这些亮的区域忽略而造成误差。阈值法分为两种:人工阈值法与自动阈值法。人工阈值法与人工手绘法存在同样的问题:都会由于操作人员地质经验的不同而使得处理结果因人而异。而自动阈值法则不存在这个问题,只要确定了自动阈值的方法后,任何人都能得到同样的处理结果。但是目前自动阈值法的方法众多,但大多数都是应用于材料,生物或是砂岩、碳酸盐岩储层样品,并没有专门应用在页岩样品的自动阈值提取方法。边缘提取法是一种先对图片进行微分处理,找到明暗变化剧烈的边界线并将其提取出来的方法。应用在孔隙提取过程中,还需要对提取出的边界进行填充。边缘提取法可以有效的将孔隙的边缘提取出来,但是在处理大面积的图片过程中,由于干酪根边缘、矿物边缘、样品预处理过程中造成的样品表面粗糙不平(棱角)及污染物的边缘都会被提取出来,从而造成大量误差,且在提取浅孔。及倾斜的有棱角的孔隙时,会由于边缘提取不全而在孔隙填充的过程中,不能填充孔隙从而造成误差。分水岭法与边缘提取法类似,都是首先对图片进行微分处理,但分水岭法接下来会将低于一定值的区域找出来,将这些区域分割成一个一个更小的区域,并将这些不同的区域识别为孔隙,但分水岭法与边缘提取法存在类似的问题,干酪根、矿物、预处理及污染物都会造成大量误差,且内部粗糙不同的大孔,分水岭法会将其分割成不同的小孔隙而造成大量误差。上述方法仅能将孔隙识别出来,不能对孔隙为有机孔隙还是为无机孔隙进行识别。目前,通常采用能谱仪得到EDS能谱,利用EDS能谱所得不同矿物及干酪根分布图与孔隙图进行叠加,然后判断有机孔隙与无机孔隙,该方法步骤繁琐且EDS所得矿物及干酪根分布图的分辨率低,识别结果精度不高。
技术实现思路
基于此,有必要提供一种泥页岩有机孔隙与无机孔隙自动识别方法及系统,以提高泥页岩有机孔隙与无机孔隙的识别精度。为实现上述目的,本专利技术提供了如下方案:一种泥页岩有机孔隙与无机孔隙自动识别方法,包括:获取泥页岩扫描电镜灰度图;统计所述泥页岩扫描电镜灰度图中每个灰度值的像素点个数,得到像素点个数随灰度值变化的关系曲线;确定所述关系曲线中有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽;所述有机质峰、所述主矿物峰和所述亮色矿物峰的峰宽相同;利用所述有机质峰最高点对应的灰度值、所述主矿物峰最高点对应的灰度值、所述亮色矿物峰对应的灰度值和所述峰宽,计算第一孔隙灰度截止值、干酪根灰度截止值和亮色矿物灰度截止值;采用所述第一孔隙灰度截止值、所述干酪根灰度截止值和所述亮色矿物灰度截止值分别对所述泥页岩扫描电镜灰度图进行阈值分割,得到初始孔隙图、初始干酪根孔隙图和亮色矿物图;依据所述初始孔隙图,对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和初始干酪根区域图;将所述初始干酪根区域图与所述亮色矿物图进行叠加,去除所述初始干酪根区域图中对应的亮色矿物,得到干酪根区域图;依据所述干酪根区域图和泥页岩边缘提取图,确定标定图;所述泥页岩边缘提取图是通过对所述泥页岩扫描电镜灰度图进行边缘提取得到的;对所述泥页岩扫描电镜灰度图按照预设阈值进行图像分割,得到第一孔隙图;依据所述干酪根区域图、所述第一孔隙图和所述标定图,确定有机孔隙图。可选的,所述确定所述关系曲线中有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽,具体包括:采用高斯分峰拟合法对所述关系曲线进行拟合,得到拟合曲线;依据所述拟合曲线确定有机质峰、主矿物峰和亮色矿物峰;所述主矿物峰为石英-长石-方解石矿物峰;所述亮色矿物峰为黄铁矿-磷灰石-金红石矿物峰;确定有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽;所述有机质峰、所述主矿物峰和所述亮色矿物峰的峰宽相同。可选的,所述依据所述初始孔隙图,对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和初始干酪根区域图,具体包括:将所述初始孔隙图和所述初始干酪根孔隙图叠加,统计所述初始干酪根孔隙图中每个孤立联通区域对应的第一参量以及所述初始孔隙图中每个孔隙对应的第二参数;所述第一参量包括孤立联通区域的内周长与外周长之和、面积、长轴值和短轴值;所述第二参数为孔隙的面积;依据所述第二参数,确定所述初始孔隙图中最大孔隙的面积;依据所述第一参量和所述最大孔隙的面积,建立干酪根区域判别函数;采用所述干酪根区域判别函数对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和干酪根区域;对所述干酪根区域进行填充,得到初始干酪根区域图。可选的,所述依据所述干酪根区域图和泥页岩边缘提取图,确定标定图,具体包括:利用Sobel算子、Prewitt算子、Roberts算子和Canny算子分别对所述泥页岩扫描电镜灰度图进行边缘提取,得到第一算子边缘图、第二算子边缘图、第三算子边缘图和第四算子边缘图;将所述第一算子边缘图、所述第二算子边缘图、所述第三算子边缘图和所述第四算子边缘图进行合并,得到泥页岩边缘提取图;将所述干酪根区域图与所述泥页岩边缘提取图进行合并,删除所述泥页岩边缘提取图中对应的所述干酪根区域图之外的边缘,得到标定图。可选的,所述依据所述干酪根区域图、所述第一孔隙图和所述标定图,确定有机孔隙图,具体包括:将所述第一孔隙图与所述干酪根区域图进行叠加,删除所述第一孔隙图中对应的所述干酪根区域图之外的孔隙,得到第二孔隙图;将所述第二孔隙图与所述标定图进行对比,确定最佳阈值下的孔隙图;对所述标定图中的边缘进行内填充,得到填充后的标定图;将所述填充后的标定图与所述最佳阈值下的孔隙图进行合并,得到有机孔隙图。本专利技术还提供了一种泥页岩有机孔隙与无机孔隙自动识别系统,包括:图像获取模块,用于获取泥页岩扫描电镜灰度图;像素点统计模块,用于统计所述泥页岩扫描电镜灰度图中每个灰度值本文档来自技高网
...

【技术保护点】
1.一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,包括:获取泥页岩扫描电镜灰度图;统计所述泥页岩扫描电镜灰度图中每个灰度值的像素点个数,得到像素点个数随灰度值变化的关系曲线;确定所述关系曲线中有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽;所述有机质峰、所述主矿物峰和所述亮色矿物峰的峰宽相同;利用所述有机质峰最高点对应的灰度值、所述主矿物峰最高点对应的灰度值、所述亮色矿物峰最高点对应的灰度值和所述峰宽,计算第一孔隙灰度截止值、干酪根灰度截止值和亮色矿物灰度截止值;采用所述第一孔隙灰度截止值、所述干酪根灰度截止值和所述亮色矿物灰度截止值分别对所述泥页岩扫描电镜灰度图进行阈值分割,得到初始孔隙图、初始干酪根孔隙图和亮色矿物图;依据所述初始孔隙图,对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和初始干酪根区域图;将所述初始干酪根区域图与所述亮色矿物图进行叠加,去除所述初始干酪根区域图中对应的亮色矿物,得到干酪根区域图;依据所述干酪根区域图和泥页岩边缘提取图,确定标定图;所述泥页岩边缘提取图是通过对所述泥页岩扫描电镜灰度图进行边缘提取得到的;对所述泥页岩扫描电镜灰度图按照预设阈值进行图像分割,得到第一孔隙图;依据所述干酪根区域图、所述第一孔隙图和所述标定图,确定有机孔隙图。...

【技术特征摘要】
1.一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,包括:获取泥页岩扫描电镜灰度图;统计所述泥页岩扫描电镜灰度图中每个灰度值的像素点个数,得到像素点个数随灰度值变化的关系曲线;确定所述关系曲线中有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽;所述有机质峰、所述主矿物峰和所述亮色矿物峰的峰宽相同;利用所述有机质峰最高点对应的灰度值、所述主矿物峰最高点对应的灰度值、所述亮色矿物峰最高点对应的灰度值和所述峰宽,计算第一孔隙灰度截止值、干酪根灰度截止值和亮色矿物灰度截止值;采用所述第一孔隙灰度截止值、所述干酪根灰度截止值和所述亮色矿物灰度截止值分别对所述泥页岩扫描电镜灰度图进行阈值分割,得到初始孔隙图、初始干酪根孔隙图和亮色矿物图;依据所述初始孔隙图,对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和初始干酪根区域图;将所述初始干酪根区域图与所述亮色矿物图进行叠加,去除所述初始干酪根区域图中对应的亮色矿物,得到干酪根区域图;依据所述干酪根区域图和泥页岩边缘提取图,确定标定图;所述泥页岩边缘提取图是通过对所述泥页岩扫描电镜灰度图进行边缘提取得到的;对所述泥页岩扫描电镜灰度图按照预设阈值进行图像分割,得到第一孔隙图;依据所述干酪根区域图、所述第一孔隙图和所述标定图,确定有机孔隙图。2.根据权利要求1所述的一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,所述确定所述关系曲线中有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽,具体包括:采用高斯分峰拟合法对所述关系曲线进行拟合,得到拟合曲线;依据所述拟合曲线确定有机质峰、主矿物峰和亮色矿物峰;所述主矿物峰为石英-长石-方解石矿物峰;确定有机质峰最高点对应的灰度值、主矿物峰最高点对应的灰度值、亮色矿物峰对应的灰度值和峰宽;所述有机质峰、所述主矿物峰和所述亮色矿物峰的峰宽相同。3.根据权利要求1所述的一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,所述依据所述初始孔隙图,对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和初始干酪根区域图,具体包括:将所述初始孔隙图和所述初始干酪根孔隙图叠加,统计所述初始干酪根孔隙图中每个孤立联通区域对应的第一参量以及所述初始孔隙图中每个孔隙对应的第二参数;所述第一参量包括孤立联通区域的内周长与外周长之和、面积、长轴值和短轴值;所述第二参数为孔隙的面积;依据所述第二参数,确定所述初始孔隙图中最大孔隙的面积;依据所述第一参量和所述最大孔隙的面积,建立干酪根区域判别函数;采用所述干酪根区域判别函数对所述初始干酪根孔隙图中是否存在干酪根进行判别,得到无机矿物孔隙图和干酪根区域;对所述干酪根区域进行填充,得到初始干酪根区域图。4.根据权利要求1所述的一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,所述依据所述干酪根区域图和泥页岩边缘提取图,确定标定图,具体包括:利用Sobel算子、Prewitt算子、Roberts算子和Canny算子分别对所述泥页岩扫描电镜灰度图进行边缘提取,得到第一算子边缘图、第二算子边缘图、第三算子边缘图和第四算子边缘图;将所述第一算子边缘图、所述第二算子边缘图、所述第三算子边缘图和所述第四算子边缘图进行合并,得到泥页岩边缘提取图;将所述干酪根区域图与所述泥页岩边缘提取图进行合并,删除所述泥页岩边缘提取图中对应的所述干酪根区域图之外的边缘,得到标定图。5.根据权利要求1所述的一种泥页岩有机孔隙与无机孔隙自动识别方法,其特征在于,所述依据所述干酪根区域图、所述第一孔隙图和所述标定图,确定有机孔隙图,具体包括:将所述第一孔隙图与所述干酪根区域图进行叠加,删除所述第一孔隙图中对应的所述干酪根区域图之外的孔隙,得到第二孔隙图;将所述第二孔隙图与所述标定图进行对比,确定最佳阈值下的孔隙图;对所述标定图中的边缘进行内填充,得到填充后的标定图;将所述填充后的标定图与所述最佳阈值下的孔隙图进行合并,得到有机孔隙图。6.一种泥页岩有机孔隙与无机孔隙自动识别系统,其特征在于,包括:图像获取模块,用于获取泥页岩扫描电镜灰度图;...

【专利技术属性】
技术研发人员:薛海涛田善思曾芳卢双舫赵日新肖佃师李俊乾黄文彪
申请(专利权)人:中国石油大学华东
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1