当前位置: 首页 > 专利查询>福州大学专利>正文

温度差分吸收光谱分析方法技术

技术编号:21452126 阅读:23 留言:0更新日期:2019-06-26 04:13
本发明专利技术属于分析化学技术领域,具体涉及温度差分吸收光谱分析方法。本发明专利技术直接将被测物质同时置于双光束分光光度计的参比池和样品池,通过控制参比池和样品池的温度使二者产生一定的温差,扫描光谱得到被测样品的温度差分吸收光谱。不同物质的温度差分吸收光谱具有特定的检测波长,以此进行物质的定性分析;随着被测物质浓度的变化,特征波长的位置会发生移动,以此进行定量分析。本发明专利技术方法既可对化学物质进行定性分析,也可对其进行定量分析,不需要选择溶剂作为空白参比,也不需要对样品溶液进行稀释,并且对同种检测物质温度差分吸收光谱的特征波长相对于常规吸收光谱的特征波长会发生红移,不用提供真空环境即可完成检测,节省了仪器成本。

【技术实现步骤摘要】
温度差分吸收光谱分析方法
本专利技术属于分析化学
,具体涉及温度差分吸收光谱分析方法。
技术介绍
吸收光谱法相对于其他仪器分析方法如气相色谱法、液相色谱法、拉曼光谱法、质谱法等,所用仪器价格相对低廉,操作简单,且易于实现便携化,因此吸收光谱法是一种经典且常用的分析方法。常规的吸收光谱法检测化学物质时需要选择合适的溶剂既稀释分析物又作为空白参比,对于某些化学物质来说,其检测波长处在小于190nm的远紫外区,需要仪器提供真空环境完成检测。1997年武汉大学曾繁清老师为了研究温度变化对不同电子跃迁方式的影响,将稀释后的样品溶液同时置于样品池和参比池,通过改变参比和样品的温度,形成一定的温差后得到温度差分吸收光谱。但是曾老师检测的样品溶液仍然是可用于常规吸收光谱检测的稀溶液,并且曾老师仅仅发现了不同电子跃迁方式的温度差分吸收光谱有一定的变化规律,而没有发现温度差分吸收光谱方法潜在的分析应用价值。
技术实现思路
本专利技术的目的在于提供一种温度差分吸收光谱分析方法。本专利技术发现温度差分吸收光谱方法既可对化学物质进行定性分析,也可对其进行定量分析。对物质进行定性或定量分析时,不需要选择溶剂作为空白参比,也不需要对样品溶液进行稀释。为了达到上述目的,本专利技术采取以下技术方案:温度差分吸收光谱的分析方法包括以下步骤:步骤S1温度差分吸收光谱的获得具体为:步骤S11将样品同时转移到双光束分光光度计的温度可控的样品池和参比池;步骤S12加热参比池和/或样品池使得二者产生一定的温度差;步骤S13在双光束分光光度计上进行光谱扫描即可得到样品的温度差分吸收光谱;步骤S2具体分析方法,包括以下步骤:步骤S21定性分析:首先检测未知样品在某一温差下的温度差分吸收光谱,进而获得其特征波长;然后通过与标准样品的温度差分吸收光谱的特征波长进行对比即可判断未知样品是何种物质;步骤S22定量分析:首先检测一系列不同浓度标准样品的温度差分吸收光谱,建立特征波长关于浓度的标准曲线;然后检测未知浓度样品的温度差分吸收光谱,得到相应的特征波长,代入标准曲线即可获得相应的浓度值。本专利技术直接将被测物质同时置于双光束分光光度计的参比池和样品池,通过控制参比池和样品池的温度使二者产生一定的温差,扫描光谱即可得到被测样品的温度差分吸收光谱。不同物质的温度差分吸收光谱具有特定的检测波长,以此进行物质的定性分析;随着被测物质浓度的变化,特征波长的位置会发生移动,以此进行物质的定量分析。本专利技术的显著优点在于:(1)本专利技术对于不同的检测物质来说,其定性应用体现在温度差分吸收光谱具有不同的特征波长,并且该特征波长随着温差的变化不发生变化。对同一种检测物质来说,温度差分吸收光谱的特征波长相对于常规吸收光谱的特征波长会发生红移。这种红移有利于特征波长从常规吸收光谱中的远紫外区(<190nm)移动至温度差分吸收光谱的近紫外区(>190nm),不用提供真空环境即可完成检测,节省了仪器成本。(2)本专利技术采用温度差分吸收光谱检测化学物质时不需要对样品溶液进行稀释。因为所用参比为样品自身,所以也不用选择空白参比,简化了分析流程,提高了工作效率。附图说明图1苯的温度差分吸收光谱;图2在277nm下的吸光度与温差的线性关系曲线;图3甲苯的温度差分吸收光谱;图4在282nm下的吸光度与温差的线性关系曲线;图5邻二甲苯的温度差分吸收光谱;图6在286nm下的吸光度与温差的线性关系曲线;图7乙酸乙酯的温度差分吸收光谱;图8在251nm下的吸光度与温差的线性关系曲线;图9异丙醇的温度差分吸收光谱;图10在205nm下的吸光度与温差的线性关系曲线;图11二甲基甲酰胺的温度差分吸收光谱;图12在266nm下的吸光度与温差的线性关系曲线;图13醋酸水溶液的温度差分吸收光谱;图14特征波长与醋酸含量的对数的线性关系曲线;图15不同含量乙醇水溶液的温度差分吸收光谱;图16特征波长与乙醇含量的线性关系曲线。具体实施方式为进一步公开而不是限制本专利技术,以下结合实例对本专利技术作进一步的详细说明。实施例1以下实施例均在TU-1950双光束分光光度计(北京,普析)上进行,其中分光光度计的样品池和参比池经过改造使其具有控温功能。控温原理:将原来的金属材质的比色池架改为具有保温效果的尼龙材质,在比色池架底部固定有陶瓷加热片和Pt100测温探头,二者与分光光度计外部的温度控制器电性相连后达到控温目的。具体为:1.以苯为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(27℃)不变,通过温控器控制样品池比色皿温度分别在27℃,37℃,44℃,51℃,59℃。这样就得到样品池和参比池温度差分别为0℃,10℃,17℃,24℃,32℃时的苯的温度差分吸收光谱,如附图1所示。在特征波长277nm下的吸光度与温差的线性关系曲线如图2所示。2.以甲苯为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(27℃)不变,通过温控器控制样品池比色皿温度分别在27℃,37℃,44℃,51℃,59℃。这样就得到样品池和参比池温度差分别为0℃,10℃,17℃,24℃,32℃时的甲苯的温度差分吸收光谱,如附图3所示。在特征波长282nm下的吸光度与温差的线性关系曲线如图4所示。3.以邻二甲苯为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(27℃)不变,通过温控器控制样品池比色皿温度分别在27℃,37℃,44℃,51℃,59℃,67℃。这样就得到样品池和参比池温度差分别为0℃,10℃,17℃,24℃,32℃,40℃时的邻二甲苯的温度差分吸收光谱,如附图5所示。在特征波长286nm下的吸光度与温差的线性关系曲线如图6所示。4.以乙酸乙酯为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(28.5℃)不变,通过温控器控制样品池比色皿温度分别在28.5℃,36.5℃,44.5℃,51.5℃,58.5℃。这样就得到样品池和参比池温度差分别为0℃,8℃,16℃,23℃,30℃时的乙酸乙酯的温度差分吸收光谱,如附图7所示。在特征波长251nm下的吸光度与温差的线性关系曲线如图8所示。5.以异丙醇为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(26℃)不变,通过温控器控制样品池比色皿温度分别在26℃,36℃,43℃,51℃,59℃,68℃。这样就得到样品池和参比池温度差分别为0℃,10℃,17℃,25℃,33℃,42℃时的异丙醇的温度差分吸收光谱,如附图9所示。在特征波长205nm下的吸光度与温差的线性关系曲线如图10所示。6.以二甲基甲酰胺为例,验证温度差分吸收光谱方法的定性应用:参比池比色皿保持室温(25℃)不变,通过温控器控制样品池比色皿温度分别在25℃,36℃,43℃,50℃,58℃,66℃。这样就得到样品池和参比池温度差分别为0℃,11℃,18℃,25℃,33℃,41℃时的二甲基甲酰胺的温度差分吸收光谱,如附图11所示。在特征波长266nm下的吸光度与温差的线性关系曲线如图12所示。定性分析结果:以上不同标准物质的温度差分吸收光谱的特征波长不同且不随温差变化而变化,具有特征性。这样就可以扫描一定温差下的未知样品的温度差分吸收光谱,通过与标准样品的特征波长进行对比即可进行判断未本文档来自技高网...

【技术保护点】
1.温度差分吸收光谱分析方法,其特征在于:包括以下步骤:通过直接将被测物质同时置于双光束分光光度计的参比池和样品池,控制参比池和样品池的温度使二者产生温差,扫描光谱得到被测样品的温度差分吸收光谱;不同物质的温度差分吸收光谱具有特定的检测波长,以此进行物质的定性分析;随着被测物质浓度的变化,特征波长的位置会发生移动,以此进行物质的定量分析。

【技术特征摘要】
1.温度差分吸收光谱分析方法,其特征在于:包括以下步骤:通过直接将被测物质同时置于双光束分光光度计的参比池和样品池,控制参比池和样品池的温度使二者产生温差,扫描光谱得到被测样品的温度差分吸收光谱;不同物质的温度差分吸收光谱具有特定的检测波长,以此进行物质的定性分析;随着被测物质浓度的变化,特征波长的位置会发生移动,以此进行物质的定量分析。2.根据权利要求1所述的温度差分吸收光谱分析方法,其特征在于:温度差分吸收光谱的分析方法具体包括以下步骤:步骤S1温度差分吸收光谱的获得具体为:步骤S11将样品同时转移到双光束分光光度计的温度可控的样...

【专利技术属性】
技术研发人员:孙建军赵留创
申请(专利权)人:福州大学
类型:发明
国别省市:福建,35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1