The invention relates to a three-dimensional self-cooling laser optical tweezers device and method based on lens combination. A three-dimensional self-cooling laser tweezers device based on lens combination is used to realize three-dimensional self-cooling. The method combines optical tweezers into the optical cavity and utilizes the three-dimensional position of the microspheres and the characteristics of cavity loss to achieve three-dimensional high-speed self-cooling of the trapped particles. The whole cooling process does not involve external feedback control and is realized by internal self-feedback of the ring cavity. It has the advantages of simple structure, good repeatability and practicability. In addition, the invention is not limited to optical trap structure and optical path structure, and has a wide application range.
【技术实现步骤摘要】
一种基于透镜组合的三维自冷却激光光镊装置和方法
本专利技术涉及一种基于透镜组合的三维自冷却激光光镊装置和方法,属于光学工程领域和精密测量
技术介绍
光具有动量和能量,光动量的具体表现则为光力。两束相向传播的高斯激光束,可以形成能束缚微米尺度粒子的双光束光学势阱,简称双光束光阱。双光束光阱可以实现光学囚禁、光学牵引、光学拉伸和光致旋转等光学操纵功能,在精密测量领域中具有广泛的应用前景。光学操纵主要运用了光的力学效应,将微粒束缚在微小的光阱里面,使得微粒的运动受到限制,这就是宏观的“冷却”。一般冷却方法可以分为开环冷却和闭环反馈冷却两种。开环冷却是指直接利用光功率固定条件下的光力的效应束缚微粒。闭环反馈冷却指利用微粒的偏移量作为反馈信号,控制光功率变化实现冷却,闭环反馈冷却能实现比开环冷却更好的冷却效果。传统的闭环反馈冷却主要使用外部电路实现反馈控制,反馈的速度受限于电路性能,难以适应高速冷却的需求。光纤激光器可以实现非常高的增益,在损耗腔中有很大的应用价值。将光镊技术结合到光纤激光器中形成损耗腔,利用激光器自身反馈特性进行微粒冷却是一种新型的冷却技术。将光镊技术结合到光纤激光器中形成损耗腔,使用透镜组合搭建特定光阱结构,使得微粒三维位置变化与激光器损耗形成特定关系,可以实现大刚度高速三维“自冷却”。使用透镜组合将光镊结合到环形腔内实现三维高速自冷却的装置和方法,目前还未见报道。
技术实现思路
为克服现有冷却技术的不足,本专利技术提出了一种基于透镜组合的三维自冷却激光光镊装置和方法,整个冷却过程不涉及外部反馈控制,由环形腔内部自反馈实现,可以实现三维的自 ...
【技术保护点】
1.一种基于透镜组合的三维自冷却激光光镊方法,整个冷却过程不涉及外部反馈控制,由环形腔内部自反馈实现,实现三维的自冷却,其特征在于,采用一种基于透镜组合的三维自冷却激光光镊装置实现三维自冷却,所述装置包括泵浦激光、波分复用器、掺杂光纤、隔离器、准直器、透镜、微粒,其中隔离器、准直器、透镜各有2个,掺杂光纤(3)、隔离器Ⅰ(4)和隔离器Ⅱ(5)、准直器Ⅰ(6)和准直器Ⅱ(7)、反射镜Ⅰ(8)和反射镜Ⅱ(9)、透镜Ⅰ(10)和透镜Ⅱ(11)、微粒(12)构成的环形腔;激光经过隔离器Ⅰ(4)和隔离器Ⅱ(5)后形成顺时针、逆时针两个方向激光光路;顺时针方向的激光经过准直器Ⅰ(6)和反射镜Ⅰ(8)后进入透镜Ⅰ(10),逆时针方向的激光经过准直器Ⅱ(7)和反射镜Ⅱ(9)后进入透镜Ⅱ(11),形成双光束光阱,微粒(12)被捕获于双光束光阱中;顺、逆两个方向的激光作用在微粒上产生两种力,包括:垂直光轴方向的梯度力
【技术特征摘要】
1.一种基于透镜组合的三维自冷却激光光镊方法,整个冷却过程不涉及外部反馈控制,由环形腔内部自反馈实现,实现三维的自冷却,其特征在于,采用一种基于透镜组合的三维自冷却激光光镊装置实现三维自冷却,所述装置包括泵浦激光、波分复用器、掺杂光纤、隔离器、准直器、透镜、微粒,其中隔离器、准直器、透镜各有2个,掺杂光纤(3)、隔离器Ⅰ(4)和隔离器Ⅱ(5)、准直器Ⅰ(6)和准直器Ⅱ(7)、反射镜Ⅰ(8)和反射镜Ⅱ(9)、透镜Ⅰ(10)和透镜Ⅱ(11)、微粒(12)构成的环形腔;激光经过隔离器Ⅰ(4)和隔离器Ⅱ(5)后形成顺时针、逆时针两个方向激光光路;顺时针方向的激光经过准直器Ⅰ(6)和反射镜Ⅰ(8)后进入透镜Ⅰ(10),逆时针方向的激光经过准直器Ⅱ(7)和反射镜Ⅱ(9)后进入透镜Ⅱ(11),形成双光束光阱,微粒(12)被捕获于双光束光阱中;顺、逆两个方向的激光作用在微粒上产生两种力,包括:垂直光轴方向的梯度力Fg和沿着光轴方向的散射力Fs,表示为:,(1),(2)其中a为垂直光轴方向的捕获效率系数,b为沿光轴方向的捕获效率系数,P为捕获光功率,x为微球垂直光轴方向偏移量,y为微球沿捕获光轴方向的偏移量,梯度力Fg使得微粒向光功率大的方向移动,散射力Fs使得微粒沿着光传播方向移动,两束对向传输的激光光束形成三维势阱...
【专利技术属性】
技术研发人员:肖光宗,邝腾芳,陈鑫麟,韩翔,杨开勇,罗晖,
申请(专利权)人:中国人民解放军国防科技大学,
类型:发明
国别省市:湖南,43
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。