【技术实现步骤摘要】
一种基于人体骨架序列和卷积神经网络的摔倒检测方法
本专利技术属于人体摔倒检测
,具体涉及一种人体摔倒检测方法。
技术介绍
随着社会的发展,全球的老龄人口在不断增加,使老年人的医疗健康成为社会关注的问题之一。美国疾病控制和防疫中心的调查结果表明,摔倒已经成为导致65岁以上老年人意外死亡和伤害的最大诱因。Noury等的研究显示,老年人摔倒后,如能得到及时的救助,可以有效降低80%的死亡风险和26%的住院长期治疗风险。而根据全国老年办统计数据显示,现有大量的老人远离子女独自生活。因此,迫切需要为老年人开发智能监控系统,该系统可以自动并立即检测跌倒事件并通知护理人员或家属。根据检测摔倒行为所涉及的设备,人体摔倒检测技术主要分为以下两类:第一、基于穿戴式传感器的摔倒检测方法,主要原理是对人体的姿态进行检测,进而进行摔倒检测。常见的传感器包括加速度传感器、陀螺仪、压力传感器等,不仅可以进行多传感器融合,还可以与心电、脉搏等设备结合进行检测。大多数基于可穿戴传感器的检测方法都采用设定阈值或设定规则来检测摔倒。Sannino等开发了一套检测方法,根据加速度计数据提取IF-THEN规则来判断是否摔倒,通过对竖直方向速度的阈值判断将摔倒与日常行为区分开来。Kwolek等利用加速度计和Kinect数据,设计了模糊检测系统来检测摔倒。但是穿戴式检测设备需要用户长期佩戴,用户体验较差,不方便日常的活动。第二、基于环境传感器的摔倒检测方法,主要原理是在检测人体目标的活动区域内安装传感器,进而进行摔倒检测,视频,音频和振动传感器是此类别的主要设备。Vaidechi等人利用相机设计 ...
【技术保护点】
1.一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,该方法包括以下步骤:步骤一、采集M1个人体摔倒骨架序列和M2个人体类摔倒骨架序列,并从MSRDaily Activity3D数据集中随机选取M3个人体骨架序列;步骤二、对步骤一中全部的M1+M2+M3个人体骨架序列进行数据增强处理,得到数据增强处理后的人体骨架序列;步骤三、将数据增强处理后的人体骨架序列中的人体关节空间位置信息转换为RGB分量,得到编码后的RGB图像;并将每张编码后的RGB图像的尺寸变换为l×h;l和h分别代表RGB图像的宽度和高度;步骤四、将步骤三尺寸变换后的RGB图像随机分成训练集图像和测试集图像两部分;步骤五、建立卷积神经网络,将训练集图像输入建立的卷积神经网络进行训练,当训练集上的损失函数值连续10次不再减小时停止训练;步骤六、将测试集图像输入步骤五停止训练时的卷积神经网络,若测试集上的准确率不低于准确率阈值,则将步骤五停止训练时的卷积神经网络作为训练好的卷积神经网络;若测试集上的准确率低于准确率阈值,则调整卷积神经网络的参数后继续训练,直至测试集上的准确率不低于准确率阈值时,得到训练好的卷积神经 ...
【技术特征摘要】
1.一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,该方法包括以下步骤:步骤一、采集M1个人体摔倒骨架序列和M2个人体类摔倒骨架序列,并从MSRDailyActivity3D数据集中随机选取M3个人体骨架序列;步骤二、对步骤一中全部的M1+M2+M3个人体骨架序列进行数据增强处理,得到数据增强处理后的人体骨架序列;步骤三、将数据增强处理后的人体骨架序列中的人体关节空间位置信息转换为RGB分量,得到编码后的RGB图像;并将每张编码后的RGB图像的尺寸变换为l×h;l和h分别代表RGB图像的宽度和高度;步骤四、将步骤三尺寸变换后的RGB图像随机分成训练集图像和测试集图像两部分;步骤五、建立卷积神经网络,将训练集图像输入建立的卷积神经网络进行训练,当训练集上的损失函数值连续10次不再减小时停止训练;步骤六、将测试集图像输入步骤五停止训练时的卷积神经网络,若测试集上的准确率不低于准确率阈值,则将步骤五停止训练时的卷积神经网络作为训练好的卷积神经网络;若测试集上的准确率低于准确率阈值,则调整卷积神经网络的参数后继续训练,直至测试集上的准确率不低于准确率阈值时,得到训练好的卷积神经网络;步骤七、利用训练好的卷积神经网络对人体进行摔倒识别。2.根据权利要求1所述的一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,所述步骤一的具体过程为:利用微软的KinectV2采集M1个人体摔倒骨架序列和M2个人体类摔倒骨架序列;从MSRDailyActivity3D数据集中随机选取M3个人体骨架序列;选取出全部的M1+M2+M3个人体骨架序列共同包含的18个关节点的空间位置信息。3.根据权利要求2所述的一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,所述步骤二对步骤一中全部的M1+M2+M3个人体骨架序列进行数据增强处理,得到数据增强处理后的人体骨架序列,其具体过程为:若每个骨架序列均包含L帧,帧率为FPS帧/秒,则每个骨架序列的持续时间t为L/FPS秒;将每个骨架序列编码为RGB图像时,若编码的每个骨架序列的持续时间长度为T;则每个RGB图像中包含的帧数fc为T×FPS;则将每个骨架序列的第1帧至第T×FPS帧作为一个新的骨架序列,将每个骨架序列的第2帧至第T×FPS+1帧作为一个新的骨架序列,以此类推,将每个骨架序列的第L-T×FPS帧至第L帧作为一个新的骨架序列,得到的全部新的骨架序列和原来的M1+M2+M3个人体骨架序列共同组成数据增强处理后的人体骨架序列。4.根据权利要求2所述的一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,所述步骤二对步骤一中全部的M1+M2+M3个人体骨架序列进行数据增强处理,得到数据增强处理后的人体骨架序列,其具体过程为:若采集M1个人体摔倒骨架序列和M2个人体类摔倒骨架序列时采用的帧率为F帧/秒,则在时间T内,以F/2的帧率对全部的M1+M2+M3个人体骨架序列进行二次采样,则每个人体骨架序列的单数帧组成一个新的骨架序列,每个人体骨架序列的双数帧组成一个新的骨架序列,得到的全部新的骨架序列和原来的M1+M2+M3个人体骨架序列共同组成数据增强处理后的人体骨架序列。5.根据权利要求3或4所述的一种基于人体骨架序列和卷积神经网络的摔倒检测方法,其特征在于,所述步骤三的具体过程为:对于数据增强处理后的每一个人体骨架序列,若人体骨架序列的第f帧中的第n个人体关节的空间位置信息为其中:代表第f帧中的第n个人体关节的x轴坐标,代表第f帧中的第n个人体关节的y轴坐标,代表第f帧中的第n个人体关节的z轴坐标;则...
【专利技术属性】
技术研发人员:李瑞峰,王珂,程宝平,武军,李钰,
申请(专利权)人:哈尔滨工业大学,中移杭州信息技术有限公司,
类型:发明
国别省市:黑龙江,23
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。