一种输变电巡检图像质量评价方法及系统技术方案

技术编号:20845781 阅读:68 留言:0更新日期:2019-04-13 09:04
本发明专利技术公开了一种输变电巡检图像质量评价方法及系统,包括:构建输变电巡检图像质量评价标准样本集;构建深度卷积神经网络,并对各层神经网络进行权重调优训练;得到至少一个深度卷积神经网络模型;根据得到的深度卷积神经网络模型,利用前向推理计算对待评价的巡检图像进行质量评价。本发明专利技术有益效果:通过构建深层次的卷积神经网络结构并对各层网络参数进行了调优训练,实现了输变电巡检图像本质特征的获取与质量评价,提高了巡检图像质量评价的鲁棒性能与准确性能,为后期的巡检图像智能分析提供更有效的图像数据。

【技术实现步骤摘要】
一种输变电巡检图像质量评价方法及系统
本专利技术涉及电力系统智能分析领域,尤其涉及一种输变电巡检图像质量评价方法及系统。
技术介绍
为保证输电线路与变电站的正常运行,输电线路无人机巡检与变电站机器人智能巡检已成为常规的巡检模式,每次巡检会产生大量的巡检图像。由于光照、雾霾、巡检过程中无人机与机器人平台抖动导致采集图像出现模糊、失焦等情况出现,极大的降低了图像的表征能力,同时提高了后期巡检图像智能分析的难度。为了保证数据的有效性并降低图像智能分析的难度,通常采用人工判读的方式进行图像质量评价并删除低质量的图像,劳动强度大且受工作人员经验的影响使得评价波动较大,无法保证质量评价的一致性。现阶段图像质量评价主要分为主观评价模式和客观评价模式,主观评价模式依靠人工判读的方式来进行,劳动强度大;客观评价模式主要利用图像视觉相关技术构建图像特征表示,结合相关评价算法来自动的实现图像质量的评价与分析。现有技术提出利用局部滤波和梯度匹配的方式进行图像质量评价,由于采用了Log-Gabor进行滤波处理,无法鲁棒的提取图像多类型特征,限制了图像质量评价方法的应用。现有技术提出采用卷积神经网络的方法来进行图像质量评判,该方法只设计了5层网络,只能够提取到局部的边缘、纹理特性,无法获取图像更深层次的语意及结构信息。由于输变电巡检图像包含的目标种类多样,且背景复杂,上述方法均无法有效、精确的实现巡检图像质量的评价。
技术实现思路
本专利技术为了解决上述问题,提出了一种输变电巡检图像质量评价方法及系统。首先,构建输变电巡检图像质量评判标准样本集;其次,设计深度卷积神经网络结构,并通过调优训练相关参数进行图像质量评判模型训练;最后,进行待评价图像的推理过程,获取图像质量评价参数,完成图像质量评价。为了实现上述目的,本专利技术采用如下技术方案:在一个或多个实施方式中公开的一种输变电巡检图像质量评价方法,包括:构建输变电巡检图像质量评价标准样本集;构建深度卷积神经网络,并对各层神经网络进行权重调优训练;在深度卷积网络模型参数训练过程中,利用公开数据集对网络进行预训练,全连接层参数采用随机初始化的方式进行赋值,采用梯度下降方法进行每层参数的优化;分别对输变电巡检图像质量评价标准样本集中随机抽取的数据进行至少一次训练,得到至少一个深度卷积神经网络模型;根据得到的深度卷积神经网络模型,利用前向推理计算对待评价的巡检图像进行质量评价。进一步地,所述输变电巡检图像质量评价标准样本集包括两部分:第一部分为通用的图像质量评价数据库AVA数据集和TID2013数据集;第二部分为人工评价后的输变电巡检图像;进一步地,第一部分和第二部分训练数据的比例为1:2。进一步地,所述构建深度卷积神经网络,具体为:以VGG19网络结构为参考,构建图像质量评价深度卷积神经网络;深度卷积神经网络包括:卷积层、池化层、全连接层和分类层;卷积层进行每层的局部区域的特征提取;池化层进行卷积处理后特征数据的降维处理;全连接层进行局部特征的汇总,形成图像统一的特征描述,作为打分分类处理的输入;分类层进行全连接层数据的打分、分类。进一步地,为了评价图像质量,将VGG19网络的soft-max交叉熵损失函数进行修正,使用归一化的EMD距离来度量图像评价的损失,实现了每张图像每个评分等级间的相对距离的计算。进一步地,归一化的EMD距离具体为:其中,p=[ps1,ps2,…,psN],s1<s2<sN,表示人工标注的图像质量概率分布,为训练过程中预测的图像质量概率分布;N为标记的评分等级;r为设定的参数。进一步地,根据得到的深度卷积神经网络模型,利用前向推理计算对巡检图像的质量进行评价,具体为:分别加载训练好的至少一个深度卷积神经网络模型,并加载每一个深度卷积神经网络模型每层的网络参数;对输入的图像进行缩放操作,并对图像进行去均值;对于每一个深度卷积神经网络模型,通过深度卷积神经网络前向推理计算过程,计算输入图像的质量评价得分;在最后的soft-max输出图像数据属于不同等级的得分概率;对得分概率计算平均值和标准差:分别求取每一个深度卷积神经网络模型计算得到的平均值和标准差的均值,作为图像质量评价指标;根据图像质量评价指标的数值,评价图像质量。在一个或多个实施方式中公开的一种基于深度卷积神经网络的输变电巡检图像质量评价系统,包括服务器,所述服务器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的任一种基于深度卷积神经网络的输变电巡检图像质量评价方法。在一个或多个实施方式中公开的一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述的任一种基于深度卷积神经网络的输变电巡检图像质量评价方法。与现有技术相比,本专利技术的有益效果是:本专利技术通过构建深层次的卷积神经网络结构并对各层网络参数进行了调优训练,实现了输变电巡检图像本质特征的获取与质量评价,提高了巡检图像质量评价的鲁棒性能与准确性能,为后期的巡检图像智能分析提供更有效的图像数据。采用更深层次的卷积神经网络,可以获取深层次的图像特征信息。附图说明构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。图1是输变电巡检图像质量评价深度卷积网络结构示意图;图2是深度卷积神经网络输变电巡检图像质量评价方法流程图。具体实施方式应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属
的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。实施例一在一个或多个实施方式中公开的一种基于深度卷积神经网络的输变电巡检图像质量评价方法,如图2所示,包括以下步骤:步骤一:构建输变电巡检图像质量评价标准样本集,该样本集主要由两部分组成:一部分为通用的图像质量评价数据库AVA数据集和TID2013数据集,一部分为人工评价后的输变电巡检图像。为了保证输变电巡检图像占据相对的主导,在训练过程中使用的两部分训练数据的比例为1:2。步骤二:构建深度卷积神经网络结构与网络各层功能参数,并对各层网络进行权重调优训练。(1)以VGG19网络结构为参考,构建图像质量评价深度卷积神经网络。主要的网络层属性有卷积层、池化层、全连接层、分类层。卷积层主要进行每层的局部区域的特征提取;池化层主要进行卷积处理后特征数据的降维处理,以提高特征的表征能力并减少数据量;全连接层主要进行局部特征的汇总,形成图像统一的特征描述,作为打分分类处理的输入;分类层主要进行全连接层数据的打分、分类。根据图像质量评价等级将分类层输出设为10,具体的网络结构及网络属性参数见图1所示。(2)为了评价图像质量,将VGG19网络的soft-max交叉熵损失函数进行修正,使用归一化的EMD距离来度量图像评价的损失:这里的p=[ps1,ps2本文档来自技高网
...

【技术保护点】
1.一种输变电巡检图像质量评价方法,其特征在于,包括:构建输变电巡检图像质量评价标准样本集;构建深度卷积神经网络,并对各层神经网络进行权重调优训练;分别对输变电巡检图像质量评价标准样本集中随机抽取的数据进行至少一次训练,得到至少一个深度卷积神经网络模型;利用前向推理计算对待评价的巡检图像进行质量评价。

【技术特征摘要】
1.一种输变电巡检图像质量评价方法,其特征在于,包括:构建输变电巡检图像质量评价标准样本集;构建深度卷积神经网络,并对各层神经网络进行权重调优训练;分别对输变电巡检图像质量评价标准样本集中随机抽取的数据进行至少一次训练,得到至少一个深度卷积神经网络模型;利用前向推理计算对待评价的巡检图像进行质量评价。2.如权利要求1所述的一种输变电巡检图像质量评价方法,其特征在于,所述输变电巡检图像质量评价标准样本集包括两部分:第一部分为通用的图像质量评价数据库AVA数据集和TID2013数据集;第二部分为人工评价后的输变电巡检图像。3.如权利要求1所述的一种输变电巡检图像质量评价方法,其特征在于,所述构建深度卷积神经网络,具体为:以VGG19网络结构为参考,构建图像质量评价深度卷积神经网络;深度卷积神经网络包括:卷积层、池化层、全连接层和分类层;卷积层进行每层的局部区域的特征提取;池化层进行卷积处理后特征数据的降维处理;全连接层进行局部特征的汇总,形成图像统一的特征描述,作为打分分类处理的输入;分类层进行全连接层数据的打分、分类。4.如权利要求1所述的一种输变电巡检图像质量评价方法,其特征在于,在深度卷积网络模型参数训练过程中,利用公开数据集对网络进行预训练,全连接层参数采用随机初始化的方式进行赋值,采用梯度下降方法进行每层参数的优化。5.如权利要求1所述的一种输变电巡检图像...

【专利技术属性】
技术研发人员:李冬田源王玮苏琦刘荫严文涛严莉李明殷齐林于展鹏穆林徐浩郭爽爽倪金超郑海杰刘越
申请(专利权)人:国网山东省电力公司信息通信公司山东鲁能智能技术有限公司国家电网有限公司
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1