交通事故数据智能分析与综合应用系统技术方案

技术编号:20486551 阅读:38 留言:0更新日期:2019-03-02 19:39
本发明专利技术提供一种交通事故数据智能分析与综合应用系统,包括数据对接模块、挖掘处理模块、交互模块、地图模块和数据分析模块,挖掘处理模块依据数据对接模块提取的交通事故数据,由交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度;数据分析模块接收交互模块的属性因子选择结果,以属性因子为数据分析角度,通过事故数据分析方式提供针对性地数据分析结果;该系统基于原始交通事故数据进行属性因子的重要度分析,配置了缺失数据估计策略,能够有效应对交通事故不同数据源提供的属性因子不一致的情况;从而从用户选择的样本数据中提取出带有交通事故重要信息的属性因子,并输出了定量化的重要度指标。

【技术实现步骤摘要】
交通事故数据智能分析与综合应用系统
本专利技术涉及一种交通事故数据智能分析与综合应用系统。
技术介绍
传统的交通事故数据应用方式比较单一,大多为定期的数据报表汇报,报表统计维度也较为固定,主要是根据管理经验中确定统计维度。但事实上,交通事故记录数据包含了事故相关的人、车、路、环境等众多属性数据,除了常用的统计维度以外,还能够从大量数据中提取出更多有价值的信息,其中一点就是对属性特征与事故的关联性的分析,挖掘属性特征中携带的事故相关信息量。从目前的研究成果与应用现状来看,对于事故属性的分析在构建安全评价体系时多有体现,例如中国专利CN201610529822.8《一种基于人-车-路-货多风险源的货运安全评价模型》中采用了事故树方法对重要属性进行了筛选,但这种方法缺乏对属性定量化地标定;中国专利CN201410129672.2《一种道路交通安全评估方法及系统》也未明确事故属性的因子载荷确定方式。属性因子的重要度是进行有针对性的事故数据分析应用的基础,而当前尚缺乏能够实现定量化属性因子重要度分析的方法;另一方面,在进行交通事故数据管理应用时手段也较为单一,大多忽略了对数据深层特征以及关联结论的挖掘。
技术实现思路
鉴于上述现状问题,本专利技术的目的是提供一种交通事故数据智能分析与综合应用系统解决现有技术中存在的当前尚缺乏能够实现定量化属性因子重要度分析的方法,在进行交通事故数据管理应用时手段也较为单一,大多忽略了对数据深层特征以及关联结论的挖掘的问题。该种交通事故数据智能分析与综合应用系统,实现以数据为驱动的交通事故属性因子重要度提取,引导用户在进行事故数据分析应用时主动关注与事故发生结果密切相关的属性因子并由此展开深度分析,改变传统的固定式数据报表统计的应用模式,为交通安全的治理工作提供更具有针对性的信息与结论。本专利技术的技术解决方案是:一种交通事故数据智能分析与综合应用系统,包括数据对接模块、挖掘处理模块、交互模块、地图模块和数据分析模块,数据对接模块:从交通事故数据库中提取指定条件的交通事故数据,并将提取的交通事故数据发送给数据对接模块;挖掘处理模块:依据数据对接模块提取的交通事故数据,由交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度;交互模块:接收挖掘处理模块得到的属性因子集合以及重要度,并结合属性因子所属维度以及重要度数值大小进行可视化显示;还包括日期时间选择控件、属性因子选择控件;将已设置的时间传输至数据对接模块,选中的属性因子传输至数据分析模块,并接收数据分析模块的分析结果,以专用控件进行内容展示;数据分析模块:接收交互模块的属性因子选择结果,以属性因子为数据分析角度,通过事故数据分析方式提供针对性地数据分析结果给交互模块与地图模块;地图模块:包含地理信息数据,支持地图操作;与交互模块协同实现前端交互操作,并将数据分析模块输出的结果进行可视化呈现;还包括区域自定义工具,通过绘图设置目标区域,并将划定的区域空间坐标范围传输至数据对接模块。进一步地,挖掘处理模块中,交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度,具体为,构建交通事故数据属性因子集合,配置缺失信息补全策略,根据属性因子级别以及数据缺失情况对属性因子进行缺失信息估计,在此基础上量化分析并输出属性因子集合元素的重要度。进一步地,挖掘处理模块中交通事故数据因子重要度分析模型进行数据处理分析具体为:S1、确定交通事故数据一级属性维度;S2、根据交通事故数据的具体字段确定一级属性的二级属性集合,该属性集合为交通事故样本数据中二级属性因子全集,集合元素个数为NL(2);对二级属性因子进行三级拆解,获得三级属性因子全集,集合元素个数为NL(3),其中三级拆解根据二级属性因子的具体取值确定,离散属性变量即根据该变量的取值范围确定三级属性因子组成,连续属性则进行离散转换,再确定其三级属性因子组成;S3、分别对二级属性因子全集、三级属性因子全集进行样本数据的分组合并,获得二级分组数量GN(2)及每组的样本量samplesize(2)、三级分组数量GN-(3)及每组的样本量samplesize(3);对于任一分组G(level)i,其属性因子包括步骤S2中的该级别全部属性以及样本量samplesize(level)i,其中level表征属性因子级别;S4、检测分组G(level)i属性因子数据是否存在缺失的情况,若不存在则转入步骤S5;否则,配置缺失信息补全策略,根据属性因子级别以及数据缺失情况对属性因子进行缺失信息估计;S5、基于分组合并数据构建随机森林回归模型,计算属性因子重要度。进一步地,步骤S4具体为,S41、序号j=1;S42、检测属性因子aj是否存在数据缺失的情况,若存在,则计算其数据缺失率rj=mj/GN(level),mi为缺失该属性因子的分组数,level的取值根据aj的属性级别确定,进入步骤S43;否则进入步骤S44;S43、若ri∈[thl,thu],则通过随机森林方法补充缺失信息,其中thl、thu分别为上下限阈值;若ri∈[0,thl),则在后续分析中放弃该属性因子;若ri∈(thu,1],则由统计值M进行缺失估计,统计值M在众数、平均数中选择;S44、j<NL(level)是否成立?若成立,则j=j+1,回到步骤S42循环处理;若不成立,则检测是否仍存在带有缺失值的属性因子,若是则返回步骤S41循环处理,否则结束缺失估计流程。进一步地,步骤S43中,通过随机森林方法补充缺失信息,具体为,在不存在缺失的样本分组中划分训练集与测试集,由训练集拟合缺失值属性因子与其他属性因子的关系,根据经由测试集测试通过的随机森林,对该分组后数据进行缺失补全,即将其他属性因子输入随机森林,输出的分类结果作为该属性因子的估计值。进一步地,步骤S5具体为,随机森林回归模型中的决策树数量为NT,对于每一颗树使用袋外数据计算袋外误差error1;随机对袋外数据所有样本的属性因子at进行噪声干扰,计算袋外误差error2;属性因子at的重要度D(ak)=∑|error1-error2|/NT。进一步地,数据对接模块中,指定条件指用户通过交互模块设置的时间范围以及通过地图模块设置的空间范围条件。进一步地,数据分析模块采用的数据分析方式包括因素分析、对应分析、关联分析、定制报表。进一步地,数据分析模块中,因素分析:提取含有选中属性因子的所有数据样本,进行时间、空间维度的指标统计;对应分析:以全部样本进行对应分析处理生成对应分析结论集合,包含对应分析二维散点图、属性因子对应分析结论,并从中提取含有选中属性因子的所有结论;关联分析:以全部样本进行关联分析处理生成关联分析结论集合,包含关联关系以及提升度;根据接收到的条件属性因子、结果属性因子,提取条件、结果中包含对应属性因子的关联分析结论;定制报表:根据接收到的若干属性因子,进行数据统计。本专利技术的有益效果是:一、该种交通事故数据智能分析与综合应用系统,基于原始交通事故数据进行属性因子的重要度分析,配置了缺失数据估计策略,能够有效应对交通事故不同数据源提供的属性因子不一致的情况;从而从用户选择的样本数据中提取出带有交通事故重要信息的属性因子,并输出了定量化的重要本文档来自技高网...

【技术保护点】
1.一种交通事故数据智能分析与综合应用系统,其特征在于:包括数据对接模块、挖掘处理模块、交互模块、地图模块和数据分析模块,数据对接模块:从交通事故数据库中提取指定条件的交通事故数据,并将提取的交通事故数据发送给数据对接模块;挖掘处理模块:依据数据对接模块提取的交通事故数据,由交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度;交互模块:接收挖掘处理模块得到的属性因子集合以及重要度,并结合属性因子所属维度以及重要度数值大小进行可视化显示;还包括日期时间选择控件、属性因子选择控件;将已设置的时间传输至数据对接模块,选中的属性因子传输至数据分析模块,并接收数据分析模块的分析结果,以专用控件进行内容展示;数据分析模块:接收交互模块的属性因子选择结果,以属性因子为数据分析角度,通过事故数据分析方式提供针对性地数据分析结果给交互模块与地图模块;地图模块:包含地理信息数据,支持地图操作;与交互模块协同实现前端交互操作,并将数据分析模块输出的结果进行可视化呈现;还包括区域自定义工具,通过绘图设置目标区域,并将划定的区域空间坐标范围传输至数据对接模块。

【技术特征摘要】
1.一种交通事故数据智能分析与综合应用系统,其特征在于:包括数据对接模块、挖掘处理模块、交互模块、地图模块和数据分析模块,数据对接模块:从交通事故数据库中提取指定条件的交通事故数据,并将提取的交通事故数据发送给数据对接模块;挖掘处理模块:依据数据对接模块提取的交通事故数据,由交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度;交互模块:接收挖掘处理模块得到的属性因子集合以及重要度,并结合属性因子所属维度以及重要度数值大小进行可视化显示;还包括日期时间选择控件、属性因子选择控件;将已设置的时间传输至数据对接模块,选中的属性因子传输至数据分析模块,并接收数据分析模块的分析结果,以专用控件进行内容展示;数据分析模块:接收交互模块的属性因子选择结果,以属性因子为数据分析角度,通过事故数据分析方式提供针对性地数据分析结果给交互模块与地图模块;地图模块:包含地理信息数据,支持地图操作;与交互模块协同实现前端交互操作,并将数据分析模块输出的结果进行可视化呈现;还包括区域自定义工具,通过绘图设置目标区域,并将划定的区域空间坐标范围传输至数据对接模块。2.如权利要求1所述的交通事故数据智能分析与综合应用系统,其特征在于:挖掘处理模块中,交通事故数据因子重要度分析模型驱动数据处理,得到属性因子集合元素的重要度,具体为,构建交通事故数据属性因子集合,配置缺失信息补全策略,根据属性因子级别以及数据缺失情况对属性因子进行缺失信息估计,在此基础上量化分析并输出属性因子集合元素的重要度。3.如权利要求2所述的交通事故数据智能分析与综合应用系统,其特征在于:挖掘处理模块中交通事故数据因子重要度分析模型进行数据处理分析具体为:S1、确定交通事故数据一级属性维度;S2、根据交通事故数据的具体字段确定一级属性的二级属性集合,该属性集合为交通事故样本数据中二级属性因子全集,集合元素个数为NL(2);对二级属性因子进行三级拆解,获得三级属性因子全集,集合元素个数为NL(3),其中三级拆解根据二级属性因子的具体取值确定,离散属性变量即根据该变量的取值范围确定三级属性因子组成,连续属性则进行离散转换,再确定其三级属性因子组成;S3、分别对二级属性因子全集、三级属性因子全集进行样本数据的分组合并,获得二级分组数量GN(2)及每组的样本量samplesize(2)、三级分组数量GN-(3)及每组的样本量samplesize(3);对于任一分组G(level)i,其属性因子包括步骤S2中的该级别全部属性以及样本量samplesize(level)i,其中level表征属性因子级别;S4、检测分组G(level)i属性因子数据是否存在缺失的情况,若不存在则转入步骤S5;否则,配置缺失信息补全策略,根据属性因子级别以及数据缺失情况对属性...

【专利技术属性】
技术研发人员:刘林饶欢陈凝吕伟韬
申请(专利权)人:江苏智通交通科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1