一种光腔结构制造技术

技术编号:19686790 阅读:40 留言:0更新日期:2018-12-08 10:00
一种光腔结构,包括腔体管,其左端设有第一高反射镜,右端设有第二高反射镜;两面高反射镜的镜面实现准直;第一高反射镜的外侧设有第一凸透镜,第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,第二端被放置在第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,第二端被放置在第二凸透镜的外侧焦点上;在腔体管内充满含有待定浓度的大气分子的气体时,第一凸透镜对第一光纤导出的光线准直后射入腔体管,使光线在两面高反射镜之间来回反射多次后离开腔体管并经由第二凸透镜聚焦到第二光纤上,再经由第二光纤导入光谱仪。本申请能够有效、便捷地检测大气分子的浓度,以及有效地检测超低浓度的大气分子浓度。

【技术实现步骤摘要】
一种光腔结构
本申请涉及环境监测
,尤其涉及一种光腔结构。
技术介绍
伴随着社会、经济的不断发展,大气污染在世界大部分地区,尤其是在发展中国家地区越来越引起人们的重视。为了检测大气污染的严重程度,通常需要利用检测仪器对大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的浓度进行检测。在现有技术中,在利用检测仪器检测大气分子的浓度之前,通常需要先用已知浓度的标准气体来标定检测仪器的灵敏系数(sensitivitycoefficient),而用已知浓度的标准气体来标定检测仪器的灵敏系数会给检测添加额外的复杂度和步骤;此外,标准气体的购买、运输等可能较为昂贵、繁琐,甚至有时难以获得的标准气体(如N2O5和NO3),从而加剧检测难度;此外,现有的检测仪器对于超低浓度的大气分子的检测效果不理想。
技术实现思路
本申请实施例公开的一种光腔结构,利用所述光腔结构不仅能够有效、便捷地检测大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的浓度,而且能够有效地检测超低浓度的大气分子浓度。本申请实施例第一方面公开一种光腔结构,包括:腔体管,所述腔体管的左端设有第一高反射镜,所述腔体管的右端设有第二高反射镜;所述第一高反射镜的镜面和所述第二高反射镜的镜面实现准直;所述第一高反射镜的外侧设有第一凸透镜,所述第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上;在所述腔体管内充满含有待定浓度的大气分子的气体时,所述第一凸透镜对所述第一光纤导出的光线准直后射入所述腔体管,以使光线在两面高反射镜之间来回反射多次后离开所述腔体管并经由所述第二凸透镜聚焦到所述第二光纤上,再经由所述第二光纤导入所述光谱仪。基于本申请实施例第一方面,在本申请实施例第一方面的第一种实施方式中,还包括:第一光学运动座,所述第一光学运动座设置在所述腔体管的左端,并且所述第一高反射镜固定在所述第一光学运动座上;所述第一光学运动座上设有用于调节所述第一高反射镜的倾斜角度,以使所述第一高反射镜的镜面与所述第二高反射镜的镜面实现准直的调节螺丝。基于本申请实施例第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,还包括:第二光学运动座,所述第二光学运动座设置在所述第一光学运动座的外侧,并且所述第一凸透镜固定在所述第二光学运动座上;所述第二光学运动座上设有用于调节所述第一凸透镜相对于所述第一高反射镜的倾斜角度,以使所述第一凸透镜和所述第一高反射镜两者之间实现准直的调节螺丝。基于本申请实施例第一方面的第二种实施方式,在本申请实施例第一方面的第三种实施方式中:所述第一光纤的第二端设置在所述第二光学运动座上,并且所述第二光学运动座上还设有用于水平调节所述第一光纤的第二端与所述第一凸透镜之间的距离,以使所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上的光纤调节旋钮。基于本申请实施例第一方面的第一种实施方式,或本申请实施例第一方面的第二种实施方式,或本申请实施例第一方面的第三种实施方式,在本申请实施例第一方面的第四种实施方式中,还包括:第三光学运动座,所述第三光学运动座设置在所述腔体管的右端,并且所述第二高反射镜固定在所述第三光学运动座上;所述第三光学运动座上设有用于调节所述第二高反射镜的倾斜角度,以使所述第二高反射镜的镜面与所述第一高反射镜的镜面实现准直的调节螺丝。基于本申请实施例第一方面的第四种实施方式,在本申请实施例第一方面的第五种实施方式,还包括:第四光学运动座,所述第四光学运动座设置在所述第三光学运动座的外侧,并且所述第二凸透镜固定在所述第四光学运动座上;所述第四光学运动座上设有用于调节所述第二凸透镜相对于所述第二高反射镜的倾斜角度,以使所述第二凸透镜和所述第二高反射镜两者之间实现准直的调节螺丝。基于本申请实施例第一方面的第五种实施方式,在本申请实施例第一方面的第六种实施方式中:所述第二光纤的第二端设置在所述第四光学运动座上,并且所述第四光学运动座上还设有用于水平调节所述第二光纤的第二端与所述第二凸透镜之间的距离,以使所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上的光纤调节旋钮。基于本申请实施例第一方面的第六种实施方式,在本申请实施例第一方面的第七种实施方式中:从所述第一光学运动座到所述腔体管的左端之间依次设置有第一波纹管和第一镜座及腔体支架;所述第一镜座及腔体支架上设有用于向所述腔体管抽入气体的进气管。基于本申请实施例第一方面的第七种实施方式,在本申请实施例第一方面的第八种实施方式中:从所述第三光学运动座到所述腔体管的右端之间依次设置有第二波纹管和第二镜座及腔体支架;所述第二镜座及腔体支架上设有用于供所述腔体管输出气体的出气管。基于本申请实施例第一方面的第八种实施方式,在本申请实施例第一方面的第九种实施方式中:所述第一镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第一高反射镜的镜面直接接触的第一吹扫气进气管;所述第二镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第二高反射镜的镜面直接接触的第二吹扫气进气管;其中,所述吹扫气包括纯氮气。从以上技术方案可以看出,本申请实施例具有以下优点:本申请实施例中,通过所述光腔结构,可以通过直接测量大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测上述大气分子的浓度及大气颗粒物的消光。此外,本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。附图说明为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本申请实施例公开的一种大气分子检测系统的原理图;图2为本申请实施例公开的一种光腔结构的结构示意图;图3为本申请实施例公开的一种大气分子检测方法的流程示意图。具体实施方式下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。需要说明的是,本申请实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括本文档来自技高网...

【技术保护点】
1.一种光腔结构,其特征在于,包括:腔体管,所述腔体管的左端设有第一高反射镜,所述腔体管的右端设有第二高反射镜;所述第一高反射镜的镜面和所述第二高反射镜的镜面实现准直;所述第一高反射镜的外侧设有第一凸透镜,所述第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上;在所述腔体管内充满含有待定浓度的大气分子的气体时,所述第一凸透镜对所述第一光纤导出的光线准直后射入所述腔体管,以使光线在两面高反射镜之间来回反射多次后离开所述腔体管并经由所述第二凸透镜聚焦到所述第二光纤上,再经由所述第二光纤导入所述光谱仪。

【技术特征摘要】
1.一种光腔结构,其特征在于,包括:腔体管,所述腔体管的左端设有第一高反射镜,所述腔体管的右端设有第二高反射镜;所述第一高反射镜的镜面和所述第二高反射镜的镜面实现准直;所述第一高反射镜的外侧设有第一凸透镜,所述第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上;在所述腔体管内充满含有待定浓度的大气分子的气体时,所述第一凸透镜对所述第一光纤导出的光线准直后射入所述腔体管,以使光线在两面高反射镜之间来回反射多次后离开所述腔体管并经由所述第二凸透镜聚焦到所述第二光纤上,再经由所述第二光纤导入所述光谱仪。2.根据权利要求1所述的光腔结构,其特征在于,还包括:第一光学运动座,所述第一光学运动座设置在所述腔体管的左端,并且所述第一高反射镜固定在所述第一光学运动座上;所述第一光学运动座上设有用于调节所述第一高反射镜的倾斜角度,以使所述第一高反射镜的镜面与所述第二高反射镜的镜面实现准直的调节螺丝。3.根据权利要求2所述的光腔结构,其特征在于,还包括:第二光学运动座,所述第二光学运动座设置在所述第一光学运动座的外侧,并且所述第一凸透镜固定在所述第二光学运动座上;所述第二光学运动座上设有用于调节所述第一凸透镜相对于所述第一高反射镜的倾斜角度,以使所述第一凸透镜和所述第一高反射镜两者之间实现准直的调节螺丝。4.根据权利要求3所述的光腔结构,其特征在于:所述第一光纤的第二端设置在所述第二光学运动座上,并且所述第二光学运动座上还设有用于水平调节所述第一光纤的第二端与所述第一凸透镜之间的距离,以使所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上的光纤调节旋钮。5.根据权利要求2、...

【专利技术属性】
技术研发人员:欧阳彬王玉政
申请(专利权)人:深圳市卡普瑞环境科技有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1