当前位置: 首页 > 专利查询>安徽大学专利>正文

一种高速列车轨边运动参数自适应识别方法技术

技术编号:18666439 阅读:41 留言:0更新日期:2018-08-14 20:13
本发明专利技术公开了一种高速列车轨边运动参数自适应识别方法,包括:(1)对轨边麦克风采集信号X(t)进行降采样、滤波得到x(t);(2)对x(t)进行短时傅里叶变换(STFT)得到时频分布STFTx(t,f);(3)初始化轨边模型参数集γ{v,r,f0};(4)基于步骤(3)中的参数和轨边信号的频移公式fk(t)构造符合多普勒时频变化规律多普勒窗wγ(t,f);(5)令x0(t)=wγ(t,f)*STFTx(t,f);(6)在整个时频域中从低频到高频依次计算所构造出来的多普勒窗区域在不同频段对应的信号能量值E;7)重复步骤(3)~(6)直至得到能量最大值Emax,将与之对应的γ{,v,r,f0}作为列车运动参数识别结果。本发明专利技术抗噪能力和参数估计自适应程度得到了提高,可用于列车轴承声学信号故障检测。

An adaptive recognition method for rail side motion parameters of high speed train

The invention discloses an adaptive identification method for rail-side motion parameters of high-speed train, which comprises: (1) down-sampling and filtering the rail-side microphone acquisition signal X (t) to obtain x (t); (2) short-time Fourier transform (STFT) to obtain time-frequency distribution STFT x (t, f); (3) initializing the rail-side model parameter set gamma {v, r, f0}; (4) based on step (3) (5) make x 0 (t) = w gamma (t, f) * STFTx (t, f); (6) in the whole time-frequency domain from low frequency to high frequency, the corresponding signal energy value E of the Doppler window region in different frequency bands is calculated sequentially from low frequency to high frequency; 7) repeat steps (3) ~ (7) repeat steps (3) ~ (3) ~ (3) ~ (4) repeat steps (3) ~ (3) ~ (3) repeat steps. 6) Up to the maximum energy Emax, the corresponding gamma {, v, r, f0} is used as the identification result of train motion parameters. The anti-noise ability and the adaptive degree of parameter estimation of the invention are improved, and can be used for fault detection of acoustic signals of train bearings.

【技术实现步骤摘要】
一种高速列车轨边运动参数自适应识别方法
本专利技术涉及高速列车轮对轴承轨边声学故障诊断的
,具体涉及一种高速列车轨边运动参数自适应识别方法。
技术介绍
列车在高速运行时轮对轴承发出的声音信号中蕴含了与其健康状况密切相关的信息,在轨边安装麦克风采集声音信号并通过信号处理手段能够对轮对轴承进行有效的故障诊断,具有非接触式监测、成本低和能发现早期故障的优点。然而,由于列车的高速行驶,采集到的道旁声学信号会发生严重的多普勒时频畸变,这会严重干扰后续的故障信息提取,所以必须对畸变信号进行矫正,而畸变矫正的前提是列车运动参数的获取。目前大多数的列车运动参数提取的算法大多存在自适应程度不够,过度依赖人为干预的问题。本专利技术旨在提高算法的自适应程度,实现不依赖人为干预来自适应的识别参数。本专利技术提供的方法可以实现基于信号本身的列车运动参数估计,无需依赖额外的测距、测速传感器。
技术实现思路
本专利技术要解决的技术问题为:克服现有技术不足,通过时频分析、瞬时频率提取、多普勒窗构建和函数拟合法,可以实现基于采集到的轨边声学信号自适应的获取参数,可运用于畸变矫正。本专利技术提出的多普勒窗的构建还可以达到可变频带的滤波效果,这样可以消除一些与主频成分信号频率接近的强背景噪声,最终改善轨边声学信号故障信息提取的效果,提高实用性。本专利技术解决上述技术问题采用的技术方案为:一种高速列车轨边运动参数自适应识别方法,使用安装在铁轨两侧的麦克风采集列车高速通过时轮对轴承发出的故障声音信号,作为检测信号X(t),对该检测信号的处理步骤为:步骤(1-1)、道旁声学信号多普勒畸变中心频率fk(t)构建;步骤(1-2)、基于上述参数集合运动模型构造符合多普勒畸变规律的窗wγ(t,f),且将每一组参数构造出来的多普勒窗的中心频率f在信号时频分布中从低频到高频依次移动,这样每移动一个Δf就又会产生一个新的多普勒窗。步骤(1-3)、依次计算所有多普勒窗所在区域的局部信号能量值E,寻找最大能量值Emax,能量最大值对应的一组参数就是最优参数。所述步骤(1-1)中,中心频率fk(t)构建的步骤如下:步骤(2-1)这里声源运动参数集参数集γ(v,r,f0)中没有包括声源运动模型的横向距离。这对算法的高效性和稳定性都是十分有利的。在算法实际匹配的过程中,只要计算出信号的时长T,就可以定义运动模型的横向距离s为:s=vT/2步骤(2-2)对声源信号的运动模型进行演化得到新的运动模型函数。这里c/v就是前面提到的马赫数M,fk是运动参数集γ中的f0的一组参数。可以定义为fk={f1...fk,k=1...Z}。所述步骤(1-2)中,多普勒窗的构建步骤如下:步骤(3-1)结合运动参数集γ(v,r,f0)和声源运动模型函数构建符合列车声音信号畸变规律的多普勒窗:v={v1...vi,i=1...L}r={r1...rj,j=1...M}f={f1...fk,k=1...Z}这里L,M和Z是这三种运动的参数的拟合范围长度,所以本算法的总共的匹配识别次数为L*M*Z。每一组运动参数可以构造一个多普勒畸变曲线。步骤(3-2)然后根据这条构造出来的多普勒畸变曲线再设定一个在时频矩阵中的上下移动的区间aΔf。这样每一组多普勒窗可以表示为:boundary=fk(t)±aΔf(k=1...Z,t=1...N/Fs)由这组边界可以构造一个时频多普勒窗wγ(t,f)。这里Δf定义为频率迁移的分辨率,这样每一组构造出来的多普勒窗的宽度为2aΔf。然后每一组被构造出来的多普勒窗会从时频矩阵的低频处向高频处移动。根据这个原理,会有许多多普勒窗分布在信号的整个时频域中,每一个多普勒窗会在信号的时频分布中选取对应到信号分布。所述步骤(1-3)中,局部信号能量最大值搜索和最优参数识别的步骤如下:步骤(4-1)将整个时频矩阵的每个像素点的能量累加起来表示信号的总能量。这里用x1(t)表示被多普勒窗选中的局部信号,局部信号选取的原理可以归纳为:这里x1(t)可以表示为:x1(t)=x(t)·S′(t,f)x1(t)是被多普勒窗选取的局部信号,这个局部信号的能量值可以在整个时频矩阵中进行计算。步骤(4-2)将局部信号x1(t)的每一个元素点进行累加就可以得到x1(t)的能量和,如下所示,这样所构造的多普勒窗中包含的信号能量越大,计算得到的能量值就越大。根据声源的运动模型可以得出,只有最优的参数所构造的多普勒窗内的信号的能量值是最大的。步骤(4-3)在时频分布中参数寻优,越亮的区域表示信号能量越高,所以越准确的声源运动参数构造的多普勒窗所在的区域越集中于信号能量高的区域。所以这里根据所有计算得到的信号能量值进行寻优就可以得到最优的声源运动参数。该寻优过程表示为:E(i,j,k)=max(max(max(E(i,j,k))))v=vir=rjf=fk本专利技术与现有技术相比的优点在于:使用构建多普勒自适应拟合轨边列车声学信号的运动参数的方法,能够实现监测系统自适应的识别参数,而不依赖于额外的传感器检测。这样不仅使得检测系统的安装更加简便,也减低了系统的成本,且识别的参数包含运动几何参数和频率参数;多普勒窗的构建,与传统方法相比实现了带内消噪,相当于是一种可变频带的带通滤波器;这种逐次构建多普勒窗去计算局部信号能量极值的方法在保证参数精度的情况下,大大的提高了算法的自适应程度,使得算法具备了良好的实用性。附图说明图1为声源运动参数自适应识别算法的程序流程图;图2为列车声源运动模型示意图;图3为多普勒窗构造原理及窗内信号能量示意图,其中,图3(a)为多普勒窗构造示意图,图3(b)为窗内能量示意图,图3(c)为时频矩阵中窗分布情况示意图;图4为内圈局部信号寻优示意图,其中,图4(a)为欠优构造窗区域示意图,图4(b)为最优构造窗区域示意图,图4(c)为过优构造窗区域示意图;图5为内圈信号窗内能量随声源运动参数分布图,其中,图5(a)为纵向距离r寻优结果示意图,图5(b)为速度v寻优结果示意图;图6为内圈信号处理结果示意图,其中,图6(a)为矫正信号时频图,图6(b)为矫正信号时域幅值谱,图6(c)为矫正信号频谱,图6(d)为矫正信号包络谱。具体实施方式下面结合附图以及具体实施案例进一步说明本专利技术。这里采用真实的轮对轴承的内圈单点故障信号进行验证,轴承的型号为我国现役货车使用的圆柱体滚动轴承NJ(P)3226X1。将采集到的轴承试验机的振动信号进行轨边实验,再由麦克风采集轴承的轨边声学信号,声源实验信号的运动模型如图2所示。实验信号采样频率50kHz,降采样为10kHz。轴承声源信号时域波形如图3所示,谐波信号中心频率为1800Hz,图4位基于本实验的内圈信号进行时频域的局部信号寻优,在图5中得到声源的最优运动参数,最后在图6中的时频分布中可以看出信号的时频畸变得到矫正而且在包络谱中提取出了微弱的故障信息。具体步骤如下:步骤(1-1)、基于时频分布对信号X(t)进行均值滤波得到去背景噪声的信号x(t);步骤(1-2)、道旁声学信号多普勒畸变中心频率fk(t)构建;步骤(1-3)、基于上述参数集合运动模型构造符合多普勒畸变规律的窗wγ(t,f),且将每一组参数构造出来的多普勒窗的中心频率f在信号时频分布中从低频到高频依本文档来自技高网...

【技术保护点】
1.一种高速列车轨边运动参数自适应识别方法,其特征在于,实现步骤如下:步骤(1‑1)、道旁声学信号多普勒畸变中心频率fk(t)构建;步骤(1‑2)、基于上述参数集和运动模型构造符合多普勒畸变规律的窗wγ(t,f),且将每一组参数构造出来的多普勒窗的中心频率f在信号时频分布中从低频到高频依次移动,这样每移动一个Δf就又会产生一个新的多普勒窗,多普勒窗的构造如下:wγ(t,f)=fk(t)±aΔf(k=1...Z,t=1...N/Fs)其中,

【技术特征摘要】
1.一种高速列车轨边运动参数自适应识别方法,其特征在于,实现步骤如下:步骤(1-1)、道旁声学信号多普勒畸变中心频率fk(t)构建;步骤(1-2)、基于上述参数集和运动模型构造符合多普勒畸变规律的窗wγ(t,f),且将每一组参数构造出来的多普勒窗的中心频率f在信号时频分布中从低频到高频依次移动,这样每移动一个Δf就又会产生一个新的多普勒窗,多普勒窗的构造如下:wγ(t,f)=fk(t)±aΔf(k=1...Z,t=1...N/Fs)其中,v,r,f0是列车运动参数集γ{v,r,f0}里的参数,分别表示列车的运动模型的列车运行速度,纵向距离,和信号的中心频率,M是马赫数,定义为列车的速度与理论声速的比值,s是运动模型的横向距离;步骤(1-3)、依次计算所有多普勒窗所在区域的局部信号能量值E,寻找最大能量值Emax。2.根据权利要求1所述的高速列车轨边运动参数自适应识别方法,其特征在于:所述步骤(1-1)中,畸变中心频率fk(t)构建的步骤如下:步骤(2-1)初始化声源运动参数集γ(v,r,f0),γ中没有包括声源运动模型的横向距离s,这对提高算法的高效性和稳定性都是十分有利的,在算法实际匹配的过程中,只要计算出信号的时长T,就可以定义运动模型的横向距离s为:s=vT/2步骤(2-2)对原来的声源运动模型进行演化得到变量个数减少的声源运动模型函数,这里c/v就是前面提到的马赫数M,fk是运动参数集γ中的f0的一组参数,可以定义为fk={f1...fk,k=1...Z}。3.根据权利要求1所述的高速列车轨边运动参数自适应识别方法,其特征在于:所述步骤(1-2)中,多普勒窗的构建步骤如下:步骤(3-1)结合运动参数集γ(v,r,f0)和声源运动模型函数构建符合列车声音信号畸变规律的多普勒窗:v={v1...vi,i=1...L}r={r1...rj,j=1...M}f={f1...fk,k=1...Z}这里L,M和Z是这三种运动的参数的拟合范围长度,总共的匹配识别...

【专利技术属性】
技术研发人员:刘方钱强付洋洋顾康康刘永斌陆思良琚斌
申请(专利权)人:安徽大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1