当前位置: 首页 > 专利查询>浙江大学专利>正文

基于K均值聚类迭代的无人机声源定位方法技术

技术编号:18614550 阅读:238 留言:0更新日期:2018-08-05 00:13
本发明专利技术公开了一种基于K均值聚类迭代的无人机声源定位方法。该方法在利用广义互相关函数计算出多组声音传感器之间的时间延迟信息的基础上,首先利用时延关系写出多种不同的线性方程组,分别计算出多个无人机声源三维坐标;然后利用K均值聚类算法估计出无人机的最佳位置坐标;最后以该聚类算法得到的位置坐标作为初始值,采用迭代算法计算出无人机最终的位置坐标。本发明专利技术能够充分利用时延估计冗余信息,结合多声音传感器的优势,更加准确、可靠地定位出无人机声源目标的位置;解决迭代算法中对初始值较敏感的缺点,利用线性方程组求解的结果作为迭代的初始值,加快收敛速度,同时保证收敛结果的准确性;该方法具有巨大的应用价值。

【技术实现步骤摘要】
基于K均值聚类迭代的无人机声源定位方法
本专利技术涉及运动声源目标定位领域,特别涉及一种基于K均值聚类迭代的无人机声源目标定位方法。
技术介绍
近年来,无人机市场迅速发展,无人机的数量呈现井喷式的增长;与此同时,无人机“黑飞”、“滥飞”的事件层出不穷,对公共安全和个人隐私带来了严重的影响,因此,无人机的监管与防御成了各国学术界和工业界研究的重点。目前用于无人机的检测手段主要有雷达、音频、视频以及射频。雷达成本较高,同时由于小型无人机飞行高度低,速度慢,多普勒频移效应不明显,因此检测检测难度较大;视频可以用于无人机的识别,但是却无法实现定位,同时现实环境复杂,容易受建筑物遮挡,且用于图像识别的样本需求量高,难以收集;射频装置主要用于检测无人机发出图传信号和遥控器的控制信号,虽然其拥有检测距离远和能定位的优点,但是当无人机设定为GPS自动导航时,射频无法检测该目标,同时环境中WI-FI信号较多,与很多无人机的通信频段处于同一频段,干扰较大;音频则可以同时实现无人机的检测定位,虽然距离短,但是通过增加声阵列的数量可以大大提升定位的距离,因此本专利技术采用声音传感器对无人机进行检测定位。在基于时延的定位技术中,通过计算两两声音传感器之间的时间延迟,然后利用时延信息进行定位;当声阵列系统中存在冗余的时延信息时,如果能够正确利用,可以大大提升系统定位的准确度和精确度。因此本专利技术在融合声阵列系统的各个时延信息基础上,提出一种定位方法,能够大大提升无人机声源定位的可靠性与精确性。
技术实现思路
本专利技术的目的在于针对现有技术的不足,提供一种基于K均值聚类迭代的无人机声源定位方法,该方法在声阵列系统能够提供冗余时延估计信息的基础上,充分利用多组时延结果,进行融合定位,以提供更加稳定、准确的无人机声源定位结果。本专利技术的目的是通过以下技术方案来实现的:一种基于K均值聚类迭代的无人机声源定位方法,包括以下步骤:(1)在声音传感器覆盖的范围内,仅有一架无人机飞行,且其声音信号强度能够被声音传感器接收;保证每个声阵列的所有声音传感器的采集时间同步,计算声音传感器之间的时延估计结果tmn,m=1,2…M,n=1,2…M且m≠n,其中M表示单个声阵列中声音传感器的数量;(2)根据声音到达不同声音传感器的时间不同有以下约束关系:dmn=||Sm-S0||-||Sn-S0||其中dmn=ctmn,利用该关系得到以下线性方程组:等式中各参数的含义为:Sm、Sn分别表示声阵列中第m个和第n个声音传感器的空间三维坐标,S0表示三维空间中无人机声源的坐标,dn0表示三维空间中无人机声源和第n个声音传感器之间的距离,c表示声速;以第n个声音传感器作为参考节点,依次取m=1,2…M且m≠n,共得到M个不同的线性方程组;对于P个声阵列,依次取每个声阵列的一个线性方程组进行组合,共得到MP个组合后的定位方程,分别求解出MP个无人机声源目标的三维坐标;(3)采用K均值聚类方法对MP个坐标进行聚类分析,得到无人机的最佳初始坐标点S;(4)将最佳初始坐标点S作为牛顿迭代的初始点,利用牛顿迭代计算出无人机声源坐标。进一步地,所述步骤(1)中,利用基于相位变换PHAT的广义互相关函数GCC计算出声音传感器之间的时延估计结果tmn。进一步地,所述步骤(2)中,在遍历组合不同的线性方程组时,每次以一个声音传感器为参考节点,同一组时延变量仅重复两次。进一步地,所述步骤(2)中,对于定位方程,利用最小二乘法求解出无人机声源目标的三维坐标。进一步地,所述步骤(3)中,根据MP的大小和实际噪声情况确定聚类簇的个数,类别最多的簇的中心点作为无人机的最佳初始坐标点S。进一步地,所述步骤(3)中,利用迭代计算出无人机声源的坐标,式中fS为dmn对S0的偏导数,为迭代后的最终结果。进一步地,所述步骤(4)中,针对得到的无人机声源坐标位置,建立无人机匀速运动的系统状态方程,利用卡尔曼滤波进行滤波处理,得到最终的无人机运动轨迹坐标。本专利技术提出的基于K均值聚类迭代的无人机声源定位方法,可以充分融合声阵列系统的时延估计信息,更加准确的定位无人机声源目标,本专利技术具有以下优势:1、能够充分利用整个声阵列系统的时延估计冗余信息,结合多声音传感器的优势,更加准确、可靠地定位出无人机声源目标的位置;2、解决迭代算法中对初始值较敏感的缺点,利用线性方程组求解的结果作为迭代的初始值,加快了收敛的速度,同时保证了收敛结果的准确性;3、不增加声阵列系统的声音传感器数量,整个计算过程快速高效,可以保证实时性的要求。附图说明图1为声阵列具体模型图;图2为无人机坐标的聚类结果图;图3为无人机坐标迭代计算结果图;图4为卡尔曼滤波结果图;图5为定位轨迹与真实GPS轨迹对比图。具体实施方式以下结合附图对本专利技术的实施作如下详述:附图1是声阵列具体模型图,声音传感器采用声传科技的CHZ-213,同时配置前置放大器。声阵列系统由2个四面体阵型的声阵列组成,每个声阵列安装4个声音传感器,每个声音传感器距离四面体底部中心点的距离为1m;声音信号通过NI-9234四通道数据采集卡进行采集,每个采集卡保证单个阵列上的4个声音传感器信号采集同步,采集频率为25600Hz。以该模型为基础,我们推导出系统的定位方程组。假设8个声音传感器的空间三维坐标为Sn(xn,yn,zn),n=1,2…8,且空间只存在一架无人机,其坐标为S0(x0,y0,z0),空间中无人机声音到达任意两个声音传感器之间的声程差为dmn,m=1,2…8,n=1,2…8且m≠n,无人机距离任意一个声音传感器的距离为di0,i=1,2…8,以声音传感器1,2为例,可以写出以下等式:d21=||S2-S0||-||S1-S0||两边同时取平方可得:整理可得:即:改写成矩阵的形式为:同理可以写出下列等式:其中p=2,3,4,q=6,7,8,将以上6个方程整理成如下矩阵的形式:AX=B并带入各个坐标为:求解其最小二乘解可以得到如下形式:X=(ATA)-1ATB=[x0y0z0d10d50]T等式中dmn=ctmn,c为声速,tmn为两个声音传感器之间的时延估计,可由广义互相关函数计算得到。针对该图中的声阵列模型,可以写出16中不同方程组组合形式,因此可以计算出16个无人机的空间三维坐标。附图2是对16种无人机空间坐标的聚类结果图,可以看出针对无人机声源的16个位置坐标,总共被分成了3种情况,图中多数的坐标点均集中在中间的位置;在K均值聚类算法中,设定为7个簇类别,采用欧拉距离进行度量;以最大簇的中心点作为无人机声源的最佳初始坐标估计结果。附图3是将聚类得到的结果作为无人机声源的位置初始坐标,利用公式:迭代计算出无人机声源的坐标,式中参数的含义为:S为无人机初始三维坐标,为最终坐标,fS为dmn对x,y,z的偏导数;可以看出,通过迭代算法,明显降低了系统中的噪点,大大提升了系统的定位精度。附图4展示了卡尔曼滤波结果图,首先将对无人机声源建立一个匀速运动的模型,然后利用卡尔曼滤波进行平滑处理,得到最终无人机声源的位置坐标。附图5展示了采用本专利技术定位方法计算出的轨迹与真实GPS轨迹对比图,可以看出通过该方法可以有效地估计出无人机声源的位置坐标。本文档来自技高网...

【技术保护点】
1.一种基于K均值聚类迭代的无人机声源定位方法,其特征在于,包括以下步骤:(1)计算声音传感器之间的时延估计结果tmn,m=1,2…M,n=1,2…M且m≠n,其中M表示单个声阵列中声音传感器的数量;(2)根据声音到达不同声音传感器的时间不同有以下约束关系:dmn=||Sm‑S0||‑||Sn‑S0||其中dmn=ctmn,利用该关系得到以下线性方程组:

【技术特征摘要】
1.一种基于K均值聚类迭代的无人机声源定位方法,其特征在于,包括以下步骤:(1)计算声音传感器之间的时延估计结果tmn,m=1,2…M,n=1,2…M且m≠n,其中M表示单个声阵列中声音传感器的数量;(2)根据声音到达不同声音传感器的时间不同有以下约束关系:dmn=||Sm-S0||-||Sn-S0||其中dmn=ctmn,利用该关系得到以下线性方程组:等式中各参数的含义为:Sm、Sn分别表示声阵列中第m个和第n个声音传感器的空间三维坐标,S0表示三维空间中无人机声源的坐标,dn0表示三维空间中无人机声源和第n个声音传感器之间的距离,c表示声速;以第n个声音传感器作为参考节点,依次取m=1,2…M且m≠n,共得到M个不同的线性方程组;对于P个声阵列,依次取每个声阵列的一个线性方程组进行组合,共得到MP个组合后的定位方程,分别求解出MP个无人机声源目标的三维坐标;(3)采用K均值聚类方法对MP个坐标进行聚类分析,得到无人机的最佳初始坐标点S;(4)将最佳初始坐标点S作为牛顿迭代的初始点,利用牛顿迭代计算出无人机声源坐标。2.根据权利要求1中所述的一种基于K均值聚类迭代的无人机声源...

【专利技术属性】
技术研发人员:陈积明常先宇史治国杨超群史秀纺吴均峰吴泽先
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1