本实用新型专利技术公开了一种用于绝缘芯变压器型高压电源的电流测量电路,本测量电路能够简单有效的避免高压电源出现高压击穿或加速管内高压打火导致的电子束流测量采样电路和PLC测量模块损坏,能够保证电子束流参数的准确采样和测量,同时提供调试阶段的直接测试功能。本测量电路通过高压电源接地端高精度采样电阻得到电流的分压信号,输入端通过集成多级过压保护,分压信号经过滤波电路由精密仪用放大器放大电压信号,实现与PLC的A/D模块的量程匹配。同时在测量电阻前端和仪用放大器两端增加切换开关和端子,供加速器调试阶段不依靠控制系统直接用万用表或示波器测量分压信号。本实用新型专利技术具有全面,安全,准确,多功能等优点。
【技术实现步骤摘要】
一种用于绝缘芯变压器型高压电源的电流测量电路
本技术属于辐射加工应用中高压型电子加速器
,更具体地,涉及一种用于绝缘芯变压器型高压电源的电流测量电路。
技术介绍
电子束辐射加工作为民用非动力核技术的一个重要应用,已经产生了巨大的经济效益。针对1MeV以下的辐射加工应用,如表面涂层固化,水凝胶制备、特种电线电缆、薄膜材料等快速增长或新兴的应用领域,绝缘芯变压器型电子辐照加速器是一种非常合适的机型。绝缘芯变压器型电子辐照加速器能量范围一般从几百千电子伏特到一兆电子伏特,电子束流强一般可达几十毫安。由于加速管电阻漏电流和高压测量电阻堆漏电流都比较小,一般测量直流高压电源的电流来指示电子束流强,所以高压电源电流的测量是非常重要的部分。由绝缘芯变压器型加速器高压电源输出的电压数百千伏,采用密闭的钢桶充满六氟化硫气体进行绝缘,高压引入加速管端部,同时加速管内部为真空,这样的结构导致绝缘芯变压器型电子加速器在研制和调试阶段容易出现高压击穿或加速管内部打火等故障,该故障会导致高压电源瞬间产生脉冲大电流,会导致电流测量采用电阻损坏,或采样电阻两端产生脉冲高压直接损坏控制系统测量用PLC的A/D模块。同时采样电压还需要和PLC的A/D模块的量程进行合适的匹配,才能保证高压电源电流的安全、准确的测量。
技术实现思路
针对现有技术的缺陷,本技术的目的在于提供一种用于绝缘芯变压器型高压电源的电流测量电路,旨在解决现有技术中容易出现高压击穿或加速管内部打火故障导致安全可靠性差的问题。本技术提供了一种用于绝缘芯变压器型高压电源的电流测量电路,包括:依次连接的采样单元、过压保护单元、滤波单元、信号放大单元、过载保护单元和测量单元;采样单元用于采集工作电流,过压保护单元用于保护打火击穿故障对后级电路的破坏,滤波单元用于对所述工作电流进行滤波处理并消除工作环境中的干扰信号,信号放大单元用于放大滤波后的工作电流以满足测量单元的量程要求,过载保护单元用于避免电路过载引起的输出超过所述测量单元的量程,测量单元用于测量绝缘芯变压器型高压电源的电流并通过PLC显示。更进一步地,电流测量电路还包括:设置在所述采样单元与待测高压电源之间的切换单元,用于实现在加速器调试阶段不依靠控制系统直接用万用表或示波器测量分压信号,在加速器运行阶段其与后级示波器BNC测量端子和PLC测量单元配合相互验证,以监测和保证测量结果的正确性。更进一步地,切换单元包括:开关和万用表用端子,可供加速器调试时不启用控制系统直接测量流经采样电阻的电流,得到其分压和实现加速器正常运行时采样信号监测和数值比对。更进一步地,采样单元包括多个并联连接的采样电阻。采样单元能够适用于不同额定参数的高压电源输出电流测量,集成分级过压保护单元,由多种不同电压等级压敏电阻并联,保证最低电压等级大于正常时采样电阻最大分压值,通过多重冗余,实现高压击穿时脉冲大电流的接地保护。更进一步地,过压保护单元包括:多个不同压敏电压级别的压敏电阻并联。更进一步地,滤波单元为π型滤波单元。更进一步地,信号放大单元包括:仪放AD620及其外围电路。更进一步地,过载保护单元包括:压敏电阻,用于避免过载电流对测量单元模块的破坏。更进一步地,测量单元为具有多功能测量单元,在测量电阻前端和仪用放大器两端增加切换开关和端子,供加速器调试阶段不依靠控制系统直接用万用表或示波器测量分压信号。测量单元包括:PLC测量模块和示波器BNC端子,可供加速器调试时不启用控制系统直接测量采样电阻的分压和实现加速器正常运行时采样信号的波形监测和数值比对。通过本技术所构思的以上技术方案,与现有技术相比,由于采用较小值的采样电阻,因此发生打火时,测样电阻两端电压较小,此故障端电压可以方便地用压敏电阻保护,多保护级别的压敏电阻并联可以覆盖不同程度的打火击穿;采样信号的精密放大使测量信号满足PLC的量程需要,这样避免了传统较大的采样电阻带来的过压损坏PLC;其多种测量手段的配合可实现在加速器调试阶段脱离控制系统测量和加速器正常运行时工作状态的监测和比对。附图说明图1是本技术第一实施例提供的用于绝缘芯变压器型高压电源的电流测量电路的原理框图;图2是本技术第二实施例提供的用于绝缘芯变压器型高压电源的电流测量电路的原理框图;图3是本技术实施例提供的用于绝缘芯变压器型高压电源的电流测量电路的具体电路图。具体实施方式为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。本技术提供一种用于绝缘芯变压器型辐照加速器的高压电源电流测量电路,能够实时全面的测量高压电源的电流,具有安全,可靠,容易操作的优点。如图1所示,本技术第一实施例提供的用于绝缘芯变压器型高压电源的电流测量电路2包括:依次连接的采样单元21、过压保护单元22、滤波单元23、信号放大单元24、过载保护单元25和测量单元26,采样单元21采样到工作电流后,由多极过压保护单元22保证避免打火击穿故障对后级电路的破坏,滤波单元23可消除工作环境的干扰信号,信号放大单元24可放大前级的采样信号以满足测量单元的量程要求,过载保护单元25可保证避免电路过载引起的输出测量单元的量程,测量单元26除了常规的通过PLC测量显示,通过与电路的简单切换由万用表直接测量和示波器的配合测量实现相互验证的多选测量功能。为了匹配测量单元的量程,传统的测量电路采用大电阻测量,其无法保证发生打火击穿故障时测量单元的安全性,而本技术电路采用小电阻测量经过多级压敏电阻即可方便实现过压保护,再进行信号放大即可实现信号的安全测量。其中,采样单元21能够适用于不同额定参数的高压电源输出电流测量,集成分级过压保护单元22,由多种不同电压等级压敏电阻并联,保证最低电压等级大于正常时采样电阻最大分压值,通过多重冗余,实现高压击穿时脉冲大电流的接地保护。滤波单元23采用LC滤波电路对采样电压进行滤波。信号放大单元24可以采用精密仪用放大器及其匹配的外围电路。具有采用压敏电阻的过载保护单元25用于采样电流超过正常工作电流但低于打火击穿电流时其测量值超过测量单元量程的保护。测量单元26用于将工作电流实时显示在人机界面上,可方便读取设备运行电流。如图2所示,本技术第二实施例提供的用于绝缘芯变压器型高压电源的电流测量电路2与第一实施例相比,在高压电源1与采样单元21之间增加了切换单元20,切换单元可以实现在加速器调试阶段不依靠控制系统直接用万用表或示波器测量分压信号,在加速器运行阶段其与后级示波器BNC测量端子和PLC测量单元配合相互验证,以监测和保证测量结果的正确性。图3示出了本技术实施例提供的用于绝缘芯变压器型高压电源的电流测量电路的具体电路,现结合图3详述如下:采样单元21包括:多个等值精密电阻并联,为了方便过压保护的压敏电阻的选择,并联等效电阻为数欧姆,比如可以选择两个5欧姆的电阻并联,其等效电阻为2.5欧姆。过压保护单元22包括:利用压敏电阻不动作时其视为开路,工作时视为短路的特性,不同压敏电压级别的压敏电阻并联,实现避免不同程度的击穿打火故障带来的破坏。本文档来自技高网...
【技术保护点】
1.一种用于绝缘芯变压器型高压电源的电流测量电路,其特征在于,包括:依次连接的采样单元(21)、过压保护单元(22)、滤波单元(23)、信号放大单元(24)、过载保护单元(25)和测量单元(26);所述采样单元(21)用于采集工作电流,所述过压保护单元(22)用于保护打火击穿故障对后级电路的破坏,所述滤波单元(23)用于对所述工作电流进行滤波处理并消除工作环境中的干扰信号,所述信号放大单元(24)用于放大滤波后的工作电流以满足所述测量单元(26)的量程要求,所述过载保护单元(25)用于避免电路过载引起的输出超过所述测量单元(26)的量程,所述测量单元(26)用于测量绝缘芯变压器型高压电源的电流并通过PLC显示。
【技术特征摘要】
1.一种用于绝缘芯变压器型高压电源的电流测量电路,其特征在于,包括:依次连接的采样单元(21)、过压保护单元(22)、滤波单元(23)、信号放大单元(24)、过载保护单元(25)和测量单元(26);所述采样单元(21)用于采集工作电流,所述过压保护单元(22)用于保护打火击穿故障对后级电路的破坏,所述滤波单元(23)用于对所述工作电流进行滤波处理并消除工作环境中的干扰信号,所述信号放大单元(24)用于放大滤波后的工作电流以满足所述测量单元(26)的量程要求,所述过载保护单元(25)用于避免电路过载引起的输出超过所述测量单元(26)的量程,所述测量单元(26)用于测量绝缘芯变压器型高压电源的电流并通过PLC显示。2.如权利要求1所述的电流测量电路,其特征在于,所述电流测量电路还包括:设置在所述采样单元(21)与待测高压电源(1)之间的切换单元(20),用于实现在加速器调试阶段不依靠控制系统直接用万用表或示波器测量分压信号,在加速器运行阶段其与后级示波器BNC测量端子和PLC测量单元配合相互验证,以监测和保证测量结果的正确性。3.如权利...
【专利技术属性】
技术研发人员:杨军,梁辉,樊明武,余调琴,张亚峰,刘涛,黄江,齐伟,左晨,张立戈,鲁垚,
申请(专利权)人:华中科技大学,
类型:新型
国别省市:湖北,42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。