基于多相关HMT模型的数字图像水印检测方法技术

技术编号:17995928 阅读:43 留言:0更新日期:2018-05-19 12:58
本发明专利技术公开一种基于多相关HMT模型的数字图像水印嵌入及提取方法,首先选取宿主图像能量最大的NSST域子带作为水印嵌入的最优子带,通过乘性嵌入方式对其系数进行修改,并将修改后系数的子带和其他子带合并进行NSST重构获得具有含水印图像;选取含水印图像能量最大的NSST域子带中的高熵块并使用BKF‑VB‑HMM对其系数进行建模,利用子带内、尺度间、尺度内方向间系数相关性估计模型的参数;最后,利用最大似然检验方法设计出最优检测器检测每个高熵块嵌入的具体水印信息,并按顺序排序获得最终的水印序列。

【技术实现步骤摘要】
基于多相关HMT模型的数字图像水印检测方法
本专利技术涉及基于统计模型的数字图像水印方法,特别涉及一种基于多相关HMT模型的数字图像水印检测方法。
技术介绍
当今社会,信息技术发展迅速,互联网文化在人们的日常生活中处处可见,图像版权的损害及非法拷贝与传播促使人们急需最佳的数字图像水印技术来解决图像信息安全危机。现有基于统计模型的水印方法,多采用小波、轮廓波等变换,不能很好地捕获二维图像的重要信息和特征,而且往往采用一种相关性来对系数建立模型,故模型不精确,检测的可信度不高。
技术实现思路
本专利技术是为了解决现有技术所存在的上述技术问题,提供一种基于多相关HMT模型的数字图像水印检测方法。本专利技术的技术解决方案是:一种基于多相关HMT模型的数字图像水印嵌入方法,包括水印嵌入及水印提取,其特征在于:约定:Q指宿主图像;指非下采样剪切波变换(NSST)第Y尺度下第Z个方向的子带;s表示NSST域能量最大子带;s1、s2表示s的两个孩子子带;t表示s的相邻子带;s*表示含水印NSST域能量最大子带;表示长度为K的二值水印序列;表示从最大能量子带选出的K个高熵块;表示每个高熵块中的系数;指每个高熵块中含水印系数;F表示每个高熵块中用于水印嵌入的系数集合;为含水印图像;为状态转移概率;M为状态数;为位置参数;为尺度参数;为协方差矩阵;所述水印嵌入按照如下步骤进行:a.初始设置获取宿主图像Q并初始化变量;b.水印嵌入b.1NSST域最大能量子带选取宿主图像Q进行二级NSST,选取能量最大子带s:构造出两种乘性嵌入强度函数用于嵌入水印位“1”或“0”:b.2所选子带进行大小相等不重叠分块将s进行不重叠且大小相等的分块,选取;b.3利用乘性方式嵌入水印修改得到:b.4NSST重构将集合并实行NSST重构获取含水印图像;所述水印提取按如下步骤进行:a.初始设置获取含水印图像并初始化变量;b.1NSST域最大能量子带选取宿主图像Q进行二级NSST,选取能量最大子带s:构造出两种乘性嵌入强度函数用于提取水印位“1”或“0”:b.2所选子带进行大小相等不重叠分块将s进行不重叠且大小相等的分块,选取;c.BKF-VB-HMM参数估计c.1通过卡丹公式分别求得两种嵌入强度函数的反函数;c.2分别计算每一个高熵块中在嵌入水印“1”和嵌入水印“0”两种假设下的BKF-VB-HMM分布概率和:d.构造最大似然检测器进行水印提取d.1利用s*估计和,s、s1、s2系数来估计,s和t估计,将以上5个参数用形式化五元组表示为:d.2利用ML决策构造最优检测器提取具体水印位:则NSST系数中的第个信息位可以按如下公式提取:d.3对每个高熵块检测到的水印排序,获得最终的水印序列。本专利技术首先选取宿主图像能量最大的NSST域子带作为水印嵌入的最优子带,通过乘性嵌入方式对其系数进行修改,并将修改后系数的子带和其他子带合并进行NSST重构获得具有含水印图像;提取水印的方法是选取含水印图像能量最大的NSST域子带中的高熵块并使用BKF-VB-HMM对其系数进行建模,利用子带内、尺度间、尺度内方向间系数相关性估计模型的参数;最后,利用最大似然检验方法设计出最优检测器检测每个高熵块嵌入的具体水印信息,并按顺序排序获得最终的水印序列。实验结果表明,本专利技术的方法由于利用多相关的HMT构造出更精确的模型,有效地提高了检测精度,同时还保持了鲁棒性和不可见性的良好平衡。与现有技术相比,本专利技术具有以下有益效果:第一,采用非下采样Shearlet变换(NSST),其具有多分辨率、多尺度和各向异性等性质,能够很好地捕获二维图像的重要信息和特征;第二,采用乘性水印嵌入方法更加符合HVS特性,使嵌入强度随着载体信号强弱成比例的变化,增强算法的鲁棒性;第三,BKF-VB-HMM模型能够更加准确地描述与捕获子带的边缘分布以及NSST域中的尺度内、尺度间、方向间系数的依赖关系,利用多种相关性进行参数估计,提高了模型的检测精度。附图说明图1为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入128位水印的含水印结果图。图2为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入256位水印的含水印结果图。图3为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入128位水印后与原图像的10倍差值结果图。图4为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入256位水印后与原图像的10倍差值结果图。图5为本专利技术实施例不可见性(峰值信噪比)与水印容量关系结果图。图6为本专利技术实施例鲁棒性测试结果图。图7为本专利技术实施例水印嵌入的流程图。图8为本专利技术实施例水印提取的流程图。具体实施方式本专利技术的基于多相关HMT模型的数字图像水印检测方法:约定:Q指宿主图像;指非下采样剪切波变换(NSST)第Y尺度下第Z个方向的子带;s表示NSST域能量最大子带;s1、s2表示s的两个孩子子带;t表示s的相邻子带;s*表示含水印NSST域能量最大子带;表示长度为K的二值水印序列;表示从最大能量子带选出的K个高熵块;表示每个高熵块中的系数;指每个高熵块中含水印系数;F表示每个高熵块中用于水印嵌入的系数集合;为含水印图像;为状态转移概率;M为状态数;为位置参数;为尺度参数;为协方差矩阵;水印嵌入如图7所示,按如下步骤进行:a.初始设置获取宿主图像Q并初始化变量;b.水印嵌入b.1NSST域最大能量子带选取宿主图像Q进行二级NSST,选取能量最大子带s:构造出两种乘性嵌入强度函数用于嵌入水印位“1”或“0”:b.2所选子带进行大小相等不重叠分块将s进行不重叠且大小相等的分块,选取;b.3利用乘性方式嵌入水印修改得到:b.4NSST重构将集合并实行NSST重构获取含水印图像;水印提取如图8所示,按如下步骤进行:a.初始设置获取含水印图像并初始化变量;b.1NSST域最大能量子带选取宿主图像Q进行二级NSST,选取能量最大子带s:构造出两种乘性嵌入强度函数用于提取水印位“1”或“0”:b.2所选子带进行大小相等不重叠分块将s进行不重叠且大小相等的分块,选取;c.BKF-VB-HMM参数估计c.1通过卡丹公式分别求得两种嵌入强度函数的反函数;c.2分别计算每一个高熵块中在嵌入水印“1”和嵌入水印“0”两种假设下的BKF-VB-HMM分布概率和:d.构造最大似然检测器进行水印提取d.1利用s*估计和,s、s1、s2系数来估计,s和t估计,将以上5个参数用形式化五元组表示为:d.2利用ML决策构造最优检测器提取具体水印位:则NSST系数中的第个信息位可以按如下公式提取:d.3对每个高熵块检测到的水印排序,获得最终的水印序列。实验测试和参数设置:实验是在MatlabR2011a环境下执行的,所涉及到的都是尺寸为512×512的灰度图像,可从以下站点下载:http://decsai.ugr.es/cvg/dbimagenes/index.php。图1为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入128位水印的含水印结果图。图2为本专利技术实施例在Lena、Barbara、Mandrill三幅图像嵌入256位水印的含水印结果图。图3为本专利技术实施例在L本文档来自技高网...
基于多相关HMT模型的数字图像水印检测方法

【技术保护点】
一种基于多相关HMT模型的数字图像水印检测方法,包括水印嵌入及水印提取,其特征在于:约定:Q指宿主图像;

【技术特征摘要】
1.一种基于多相关HMT模型的数字图像水印检测方法,包括水印嵌入及水印提取,其特征在于:约定:Q指宿主图像;指非下采样剪切波变换(NSST)第Y尺度下第Z个方向的子带;s表示NSST域能量最大子带;s1、s2表示s的两个孩子子带;t表示s的相邻子带;s*表示含水印NSST域能量最大子带;表示长度为K的二值水印序列;表示从最大能量子带选出的K个高熵块;表示每个高熵块中的系数;指每个高熵块中含水印系数;F表示每个高熵块中用于水印嵌入的系数集合;为含水印图像;为状态转移概率;M为状态数;为位置参数;为尺度参数;为协方差矩阵;所述水印嵌入按照如下步骤进行:a.初始设置获取宿主图像Q并初始化变量;b.水印嵌入b.1NSST域最大能量子带选取宿主图像Q进行二级NSST,选取能量最大子带s:构造出两种乘性嵌入强度函数用于嵌入水印位“1”或“0”:b.2所选子带进行大小相等不重叠分块将s进行不重叠且大小相等的分块,选取;b.3利用乘性...

【专利技术属性】
技术研发人员:杨红颖徐欢牛盼盼王向阳
申请(专利权)人:辽宁师范大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1