非调质易焊接超高强度钢及其生产方法技术

技术编号:1789609 阅读:178 留言:0更新日期:2012-04-11 18:40
一种非调质易焊接超高强度钢及其生产方法,该方案包括有铁和其它化学成分及不可避免的杂质,其它化学成分含量按重量的百分比为:碳0.05~0.10%,硅0.2~0.55%,锰1.0~2.2%,磷≤0.015%,硫≤0.010%,硼0.0005%~0.003%,稀土≤0.020%;铌0.02~0.06%、钒0.02~0.1%、钛0.008~0.035%中的一种或几种;铬0.2~0.6%、钼0.0~0.35%、铜0.2~0.6%、镍0.1~0.5%中的一种或几种。其方法包括冶炼、连铸形成钢坯,钢坯加热后,分别在奥氏体再结晶区和未再结晶区轧制,控轧后冷却即成。该方案可使钢的屈服强度达到980MPa以上水平,-60℃低温冲击韧性达到100J以上,并具有低碳当量易焊接、成本低廉、工艺简单、易于大批量生产的特点。

【技术实现步骤摘要】

本专利技术涉及的是低碳低合金钢及其生产方法,尤其是一种。
技术介绍
国内外长期使用的屈服强度在700MPa以上的高强度中厚钢板主要采用高合金化、淬火加高温回火调质热处理的工艺制造,强度水平受碳含量和回火温度控制,随着强度水平的提高,碳含量和合金含量均上升,在焊接时需要进行焊前预热与焊后处理,如日本的Welten系列钢、德国的STE系列以及瑞典的WELD系列钢板等。为增加钢的淬透性,必须向钢中加入大量的Cr、Mo、Ni、Cu等贵重合金元素,尤其Ni含量要控制在1.00%以上,Mo、Cr含量一般要控制在0.5%以上;同时调质处理高强钢的热处理工艺复杂,需要较长的处理时间和大型的设备,成本高,工艺周期长。由国家知识产权局公开的一项美国埃克森美孚上游研究公司申请的申请号为01137068.8,名为“超低温韧性优异的可焊接的超高强度钢板的生产方法”的专利,该专利提供了一种抗拉强度930MPa、-40℃低温冲击良好的钢种的制造方法,其不足之处在于强度级别仅能达到屈服强度800MPa,昂贵的合金Mo含量高达0.3-0.7%,低于850℃的终轧温度对轧机能力要求极严。由国家知识产权局公开的一项宝山钢铁股份有限公司申请的申请号为200410017255.5,名为“可大线能量焊接的超高强度厚钢板及其制造方法”的专利,该专利提供了一种可大线能量焊接、0℃以上焊接钢板无需预热的钢种,其不足之处在于强度级别仅能达到屈服强度800MPa,且Ni(0.50-0.80%)、Cu(0.60-1.0%)含量高,必然造成高成本,且在获得高强度的同时易存在Cu的热脆性。碳的范围仅为0.01-0.06%,必须采用循环脱气真空处理方法(RH)进一步脱碳处理,对炼钢装备要求极严。由国家知识产权局公开的一项宝山钢铁股份有限公司申请的申请号为200510024775.3,名为“屈服强度960MPa以上超高强度钢板及其制造方法”;申请号为200510024756.0,名为“屈服强度1100MPa以上超高强度钢板及其制造方法”的专利,该两项专利申请公开了热轧后直接淬火和回火、具有良好塑性和焊接性的超高强度钢种,其不足之处在于其碳的范围为0.08-0.20%,势必造成碳当量偏高,对焊接不利;钢板的厚度仅能生产25mm以内,-40℃低温冲击韧性仅30-40J;且工艺上要求直接淬火加回火,对设备能力要求极高,工艺复杂,工序成本高。这些都是现有技术所存在的不足之处。
技术实现思路
本专利技术的目的就是针对现有技术所存在的不足,而提供一种的技术方案,该方案是在低碳低合金钢的基础上通过适当添加合金元素,摒弃复杂、耗能的淬火回火工艺,配以简单易行的现代热机械处理工艺(TMCP)即可使钢的屈服强度达到980MPa以上水平,-60℃低温冲击韧性达到100J以上,并具有低碳当量易焊接、成本低廉、工艺简单、易于大批量生产的特点。本方案是通过如下技术措施来实现的非调质易焊接超高强度钢,包括有铁和其它化学成分及不可避免的杂质,其化学成分含量按重量的百分比为碳0.05~0.10%,硅0.2~0.55%,锰1.0~2.2%,磷≤0.015%,硫≤0.010%,硼0.0005%~0.003%,稀土≤0.020%;铌0.02~0.06%、钒0.02~0.1%、钛0.008~0.035%中的一种或几种;铬0.2~0.6%、钼≤0.35%、铜0.2~0.6%、镍0.1~0.5%中的一种或几种。所述的化学成分中钒的重量的百分比范围优选为0.025-0.06%。钢中稀土/硫≥1.3。生产所述非调质易焊接超高强度钢的方法,其特征在于,所述方法包括如下步骤1)按所述的成分冶炼、连铸形成优质钢坯,根据成品尺寸要求切割成合理坯料;2)控制钢坯在炉加热时间≥2.5小时,加热温度1150~1280℃; 3)采用两阶段控制轧制工艺,分别在奥氏体再结晶区和未再结晶区轧制;适当加大奥氏体再结晶区的压下量,道次变形量一般控制在8-15%;在生产中应严格控制第二阶段未再结晶区的开轧温度,一般为850~950℃,适当增大道次变形量,此低温区道次变形量控制在12-25%;4)控轧后以不低于10℃/s的冷却速度冷却至450℃以下终止冷却,随后空冷至室温。所述方法中,控轧后冷却速度优选为10~30℃/s。本方案的有益效果可根据对上述方案的叙述得知。在保证经济纯净度的情况下,需要降低钢中的碳含量,但由于在生产中冶炼后合金的加入会使钢水增碳,0.04%以下的碳含量较难控制,因此钢中碳含量要求至0.05%~0.10%左右,能在保证具有较高强度的前提下,具有良好的韧性和焊接性能。从钢种高强度出发,组织应为各类贝氏体+马氏体组织为宜,加入一定量的合金元素进行固溶强化及改变钢种的相变温度。考虑到成本因素,应尽量减少合金元素的加入量,通过降低碳含量同时采用铌、钒、钛、硼元素的复合加入技术来达到强化的目的。另外利用铌、钛、钼、铜等微合金元素的应变诱导析出以及时效强化效果,进一步提高强度。微合金化必须结合合理的控轧控冷工艺,达到提高强韧性、焊接性的目标。在热机械处理过程中,通过奥氏体两阶段形变达到细化组织的目的,同时,微合金元素Nb、Ti、V、B等在TMCP工艺中对综合细化组织,控制相变,析出强化等有重要作用。控制轧制可细化晶粒,提高钢板的屈服强度和韧性。尤其是高温奥氏体再结晶阶段8-15%的大变形可改变夹杂物的大小、数量和分布状态,有利破碎铸坯柱状晶,促进高温区的扩散,减少成分偏析,有利于内部缺陷的焊合、再结晶完全等等。未再结晶阶段850~950℃的开轧温度对轧机能力要求不高,适当增大未再结晶区道次变形量,未再结晶晶粒受到了较大的变形,晶粒不仅被拉长,晶内还出现比较多的变形带,因此转变后也能得到细小的晶粒,使得整个组织的均匀性得到改善。控制冷却则可降低合金元素和碳当量,提高钢板的可悍性能,且可放宽控制轧制条件,使钢板性能的各向异性降低,但必须均匀冷却以保证冷却的瞬间温度均匀。将控制轧制和控制冷却有效地结合起来,可显著地改善钢板性能、降低升级成本和节约贵重合金元素,并使钢板性能优于热处理的钢板。本专利技术选择的必要合金元素及其数量在本专利技术钢中的作用碳(C)碳对钢的强度、低温冲击韧性、焊接性能产生显著影响。碳含量过低会使NbC生成量降低,影响控轧效果,也会增大冶炼控制难度,碳含量过高,又会使碳当量升高影响到焊接性能,因此,本专利技术设定的最佳碳含量为0.05~0.10%。硅(Si)本专利技术中硅含量控制在0.2~0.55%,硅主要以固溶强化形式提高钢的强度,超过0.55%时,会造成钢的韧性下降。锰(Mn)本专利技术中锰含量控制在1.0~2.2%,锰的成本低廉,其固溶强化作用会使钢的抗拉强度大幅度上升,因此本专利技术中把锰作为主要合金元素。硼(B)为了获得高的强度,加入了成本较低的硼元素来增加钢的淬透性。硼可用作昂贵合金元素的替代品来促进沿整个钢板厚度方向上的显微组织均匀性。硼也可增大钼和铌对钢淬透性的提高作用,因而硼的加入可使低碳当量的钢获得高的强度,范围控制在0.0005~0.003%。稀土(RE)稀土能使钢中硫化物球化,使之细化、变性,减少有害大块夹杂的数量,从而改善钢的强韧性各项性能;当钢中的RE/S≥1.3时,钢中硫化物夹杂可以得到彻底球化。铜(C本文档来自技高网
...

【技术保护点】
非调质易焊接超高强度钢,包括有铁和其它化学成分及不可避免的杂质,其特征在于,其化学成分含量按重量的百分比为:    碳0.05~0.10%,硅0.2~0.55%,锰1.0~2.2%,磷≤0.015%,硫≤0.010%,硼0.0005%~0.003%,稀土≤0.020%;铌0.02~0.06%、钒0.02~0.1%、钛0.008~0.035%中的一种或几种;    铬0.2~0.6%、钼≤0.35%、铜0.2~0.6%、镍0.1~0.5%中的一种或几种。

【技术特征摘要】

【专利技术属性】
技术研发人员:孙卫华胡淑娥孙浩周兰聚冯勇王焕洋李旺生韩启彪李梅广赵乾朱传运
申请(专利权)人:济南钢铁股份有限公司
类型:发明
国别省市:88[中国|济南]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利