一种计及可再生能源和储能的能源集线器优化调度模型制造技术

技术编号:17615597 阅读:147 留言:0更新日期:2018-04-04 06:49
本发明专利技术公开了计及可再生能源和储能的能源集线器优化调度模型,所述优化调度模型的建立包括以下步骤:步骤一:确定能源集线器中电力变压器、微燃机、燃气锅炉、光伏电池板、太阳能集热器和电、热储能设备的基本运行参数;步骤二:构建系统目标函数、确定系统决策变量和系统决策的约束条件,提出计及可再生能源和储能的能源集线器优化调度模型,形成系统的日前经济性优化调度问题;步骤三:获取日前用户能源需求数据、供给侧能源价格以及可再生能源出力数据;步骤四:求解日前经济优化调度问题,得到日前决策变量结果;步骤五:更新时间到下一调度周期,返回步骤三;所述模型避免了可再生资源的浪费,并且有效地减小系统运行费用。

An optimal scheduling model for energy hub with renewable energy and energy storage

The invention discloses a scheduling optimization model of energy meter and the hub of renewable energy and energy storage, the optimal scheduling model comprises the following steps: basic operation parameters of power transformer, energy hub in micro gas turbine, gas boiler, photovoltaic panels, solar collector and the electrical and thermal energy storage equipment step two: build system; the objective function and constraint conditions of system variables and the decision-making system, puts forward the optimization scheduling model of energy meter and the hub of renewable energy and energy storage, before the economic optimization problem of formation system; step three: get the day before the user demand for energy data, renewable energy prices and supply side energy output data; step four: the day before solving the problem of optimal economic dispatch, get before the date of the decision variables; step five: time to update The next scheduling cycle returns step three; the model avoids the waste of renewable resources and effectively reduces the cost of the system.

【技术实现步骤摘要】
一种计及可再生能源和储能的能源集线器优化调度模型
本专利技术涉及能源系统
,特别是涉及计及可再生能源和储能的能源集线器优化调度模型。
技术介绍
随着对综合能源系越来越广泛的关注和深入的研究,能源集线器作为一种重要的能源转化环节也备受关注。能源集线器是综合能源系统中多类型能源相互转化的重要载体,是一种将电力、天然气等供给侧能源转化为电、热等负荷侧能源的能量转换装置,对比传统单一的能源供给方式,能源集线器能够有效地提高综合能源的利用效率。但现有的能源集线器普遍采用以电力变压器、微燃机和燃气锅炉等设备的耦合模型对其进行建模,考虑到目前以光伏电池板、太阳能集热器等为代表性的可再生能源设备以及以锂电池、钒液流电池等为代表性的电化学储能技术和由高绝热性能复合材料为代表的储热技术的不断发展,电、热储能设备已经在能源系统中逐步展开应用,可以将光伏电池板、太阳能集热器等可再生能源设备和电、热储能设备应用于能源集线器中,参与能源集线器的优化调度。因此希望有一种计及可再生能源和储能的能源集线器优化调度模型来解决现有技术中存在的问题。
技术实现思路
本专利技术的目的在于提供一种计及可再生能源和储能的能源集线器优化调度模型,避免了可再生资源的浪费。本专利技术提供一种计及可再生能源和储能的能源集线器优化调度模型,所述优化调度模型的建立包括以下步骤:步骤一:确定能源集线器中电力变压器、微燃机、燃气锅炉、光伏电池板、太阳能集热器和电、热储能设备的基本运行参数;步骤二:构建系统目标函数、确定系统决策变量和系统决策的约束条件,提出计及可再生能源和储能的能源集线器优化调度模型,形成系统的日前经济性优化调度问题;步骤三:获取日前用户能源需求数据、供给侧能源价格以及可再生能源出力数据;步骤四:求解日前经济优化调度问题,得到日前决策变量结果;步骤五:更新时间到下一调度周期,返回步骤三。优选地,所述能源集线器中的光伏电池板和太阳能集热器为可再生能源设备。优选地,所述步骤一中能源集线器包括能源转化设备和储能设备;能源转化设备包括:所述电力变压器、微燃机和燃气锅炉,能源转化设备的所述基本运行参数包含:额定容量、最大输出功率、最小输出功率、最大爬坡速率、最小爬坡速率和转换效率;储能设备包括:所述光伏电池板和太阳能集热器,储能设备的所述基本运行参数包含:额定能量、最大能量值、最小能量值、最大充放功率、最小充放功率、充放能量效率和静态能量效率。优选地,所述步骤二中系统目标函数为最小化运行成本,最小化运行成本包括用能成本和储能运行成本两部分;所述系统决策变量为所述能源集线器的电供给功率、气供给功率、天然气分配因子、电储能充放能功率和热储能充放能功率;所述系统决策约束条件为所述能源转化设备的功率上下限约束、所述能源转化设备的爬坡约束、所述储能设备的能量状态约束、所述储能设备的充放电功率约束和所述储能设备的调度周期起始能量状态约束以及供给侧传输功率约束。优选地,所述步骤三中日前用户能源需求数据包括用户侧电、热负荷预测值和供给侧能源价格数据;所述供给侧能源价格包括电、气能源价格;所述可再生能源出力数据包括太阳能集热器热出力预测值和电网侧光伏发电出力预测值。本专利技术公开了一种计及可再生能源和储能的能源集线器优化调度模型,该能源集线器日前经济优化调度模型考虑了可再生能源设备,避免了可再生资源的浪费、减小了化石能源的使用,同时也可以有效地减小系统运行费用,考虑了电、热储能设备,增加了优化调度的灵活性,为能源集线器的经济运行提供了一种成本更低、灵活性性更强的优化调度模型。附图说明图1是计及可再生能源和储能的能源集线器结构图。图2是不同场景下能源集线器每小时购电量对比图。图3是不同场景下能源集线器每小时购气量对比图。图4是不同场景下微燃机每小时耗气量对比图。图5是不同场景下燃气锅炉每小时耗气量对比图。图6是情景4场景下电储能能量状态和充放电功率图。图7是情景4场景下热储能能量状态和充放热功率图。具体实施方式为使本专利技术实施的目的、技术方案和优点更加清楚,下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本专利技术一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本专利技术,而不能理解为对本专利技术的限制。基于本专利技术中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。下面结合附图对本专利技术的实施例进行详细说明。如图1所示,计及可再生能源和储能的能源集线器结构图,图中以天然气网和电网构成的供给单元、以电力变压器、微燃机、燃气锅炉和电、热储能构成的能源集线器和以多个用户构成的负荷单元。在本实施例的计算仿真中对于供给侧由天然气网向燃气锅炉和微燃机供气、电网和光伏设备向电力变压器供电,对于负荷侧采用微燃机、电力变压器和电储能为用户供电为主、采用微燃机、燃气锅炉和热储能为用户供气为主。为对比不同能源集线器模型的调度结果,构建了以下四种场景进行分析:情景1:不含可再生能源装置和储能装置;情景2:含可再生能源装置,但不含储能装置;情景3:含可再生能源装置和储能装置。图2是不同场景下能源集线器每小时购电量对比图;图3是不同场景下能源集线器每小时购气量对比图;图4是不同场景下微燃机每小时耗气量对比图;图5是不同场景下燃气锅炉每小时耗气量对比图;图6是情景4场景下电储能能量状态和充放电功率图;图7是情景4场景下热储能能量状态和充放热功率图。仿真计算采用图1所示的计及可再生能源和储能的能源集线器结构图。从仿真结果可以看出,图2为不同场景下能源集线器每小时购电量对比图、图3为不同场景下能源集线器每小时购气量对比图。当能源集线器中计及可再生能源装置时,在光伏和太阳能集热器有输出功率的时段(07:00-21:00)内,整个能源集线器的购电量和购气量都有明显地下降;当能源集线器中计及电、热储能装置时,储能装置的充放电使得能源集线器的购电量和购气量曲线具有一定的差异性。例如在3:00-6:00时,由于电储能装置充电的影响使得图2中情景3场景下的耗电量在该时段高于情景2;在13:00-16:00时,由于热储能装置蓄热的影响使得图3中情景3场景下的耗气量高于情景2,但对于能源集线器的耗电量两种场景下却是相反的结果,这是因为在改时段由于能源价格的影响,系统优先使用CHP供给能源,由于需要对热储能进行充电,CHP机组出力大于情景2下机组出力,伴随而来的是产生较多的电能,因此能源集线器系统在该时段购电量较情景2有所减少。图4是不同场景下微燃机每小时耗气量对比图,图5是不同场景下燃气锅炉每小时耗气量对比图。由于电价的实时波动,能源集线器对于不同的电价下会供给设备出力优化出不同的结果。例如当在02:00-08:00时,由于电价相对于整体水平较低,能源集线器会优先选择从电网购电的方式来满足用户侧的电负荷需求,同时此时天然气价格相比于电价偏高,能源集线器会优先选择产热效率较高的燃气轮机来满足用户侧热负荷的需求;反之,在其他时段,由于电价相对于整体水平较高,同时此时天然气价格相比于电价偏低,能源集线器会优先选择利用综合效率较高的C本文档来自技高网...
一种计及可再生能源和储能的能源集线器优化调度模型

【技术保护点】
一种计及可再生能源和储能的能源集线器优化调度模型,其特征在于,所述优化调度模型的建立包括以下步骤:步骤一:确定能源集线器中电力变压器、微燃机、燃气锅炉、光伏电池板、太阳能集热器和电、热储能设备的基本运行参数;步骤二:构建系统目标函数、确定系统决策变量和系统决策的约束条件,提出计及可再生能源和储能的能源集线器优化调度模型,形成系统的日前经济性优化调度问题;步骤三:获取日前用户能源需求数据、供给侧能源价格以及可再生能源出力数据;步骤四:求解日前经济优化调度问题,得到日前决策变量结果;步骤五:更新时间到下一调度周期,返回步骤三。

【技术特征摘要】
1.一种计及可再生能源和储能的能源集线器优化调度模型,其特征在于,所述优化调度模型的建立包括以下步骤:步骤一:确定能源集线器中电力变压器、微燃机、燃气锅炉、光伏电池板、太阳能集热器和电、热储能设备的基本运行参数;步骤二:构建系统目标函数、确定系统决策变量和系统决策的约束条件,提出计及可再生能源和储能的能源集线器优化调度模型,形成系统的日前经济性优化调度问题;步骤三:获取日前用户能源需求数据、供给侧能源价格以及可再生能源出力数据;步骤四:求解日前经济优化调度问题,得到日前决策变量结果;步骤五:更新时间到下一调度周期,返回步骤三。2.根据权利要求1所述的计及可再生能源和储能的能源集线器优化调度模型,其特征在于:所述能源集线器中的光伏电池板和太阳能集热器为可再生能源设备。3.根据权利要求2所述的计及可再生能源和储能的能源集线器优化调度模型,其特征在于:所述步骤一中能源集线器包括能源转化设备和储能设备;能源转化设备包括:所述电力变压器、微燃机和燃气锅炉,能源转化设备的基本运行参数包含:额定容量、最大输出功率、最小输出功率、最大爬坡速率、最小...

【专利技术属性】
技术研发人员:张琳娟卢丹王利利郭璞邱超张海宁郑征张平周楠李珊张庆庆于秋玲胡浩张建华
申请(专利权)人:国家电网公司国网河南省电力公司经济技术研究院华北电力大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1