The invention discloses a temperature and strain of fiber F P cavity FBG structure dual parameter optical fiber sensor based on the temperature and strain sensing characteristics were studied. The mathematical model was established between the system temperature and strain and wavelength, the sensing coefficient matrix of the system can simultaneously monitor the outside temperature and based on the double strain parameters; temperature and strain of fiber F P cavity FBG structure of the double optical fiber sensor has the advantages of simple structure, low manufacturing cost, good measurement stability, does not need special written on FBG, cross sensitivity to stress and temperature, with a high reference value, but also has important application value in the aerospace biomedical health monitoring of large buildings. In combination with the description and practice of the invention disclosed here, the other embodiments of the invention are easy to think and understand for the technical personnel of the field.
【技术实现步骤摘要】
基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器
本专利技术涉及光纤传感
,具体为基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器。
技术介绍
随着现代光纤通信技术的发展,光纤传感技术逐步进入传感领域市场,相对于传统传感器,光纤传感器质量轻,体积小,抗腐蚀,损耗低,测量精度高,测量范围广,更符合现代传感技术的发展要求,被广泛应用于航空航天、化学检测、健康监测、石油勘探以及生物医学等各个领域。温度和应变是两个对于材料非常重要的参数,在医学检测,工业生产以及大型飞行器件的正常运行都应用广泛,针对温度和应变传感器的研究也越来越多。其中,温度和应变是传统传感器能够直接传感测量的两个最基本的物理参量,它们构成了其它各物理量传感的基础。目前针对传感器的研究更多的是单一变量的传感测量,而实际环境并不是简单的单一变量,交叉敏感问题无处不在。近年来,对于双参数测量传感器的研究也受到研究者的广泛青睐,其中2012年葡萄牙C.Gouveia等人利用高双折射光纤制作了能够同时传感折射率和温度的光栅腔传感器,通过分别测量干涉条纹对比度和波长漂移变化来解调折射率和温度的变化,实现的快慢轴折射率灵敏度分别达到-1.06%0.01RIU和-0.96%.0.0RIU,温度灵敏度达到10.52pm/℃和10.13pm/℃;同年,西北工业大学邵敏等人利用长周期光纤光栅(LPFG)和保偏光纤(PMF)Sagnac环透射光谱的调制特性,设计了温度和折射率同时区分测量系统,其中温度灵敏度0.1286nm/℃,折射率灵敏度为49.38dB/RIU。2014年JianyingY ...
【技术保护点】
基于光纤F‑P腔级联FBG结构的温度及应变双参量光纤传感器,包括光源结构(1)、传输光纤(2)、光纤传感结构(3)和光谱分析仪(4),其特征在于:所述光源结构(1)的输出端与环形器(5)的输入端连接,并且环形器(5)的输出端通过传输光纤(2)与光纤传感结构(3)的输入端连接,所述光谱分析仪(4)的输出端与环形器(5)的输入端连接;所述光纤传感结构(3)包括单模光纤(31),所述单模光纤(31)的端面与光纤F‑P结构(32)固定连接,并且单模光纤(31)的端面且位于光纤F‑P结构(32)的尾纤处与FBG(33)连接。
【技术特征摘要】
1.基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器,包括光源结构(1)、传输光纤(2)、光纤传感结构(3)和光谱分析仪(4),其特征在于:所述光源结构(1)的输出端与环形器(5)的输入端连接,并且环形器(5)的输出端通过传输光纤(2)与光纤传感结构(3)的输入端连接,所述光谱分析仪(4)的输出端与环形器(5)的输入端连接;所述光纤传感结构(3)包括单模光纤(31),所述单模光纤(31)的端面与光纤F-P结构(32)固定连接,并且单模光纤(31)的端面且位于光纤F-P结构(32)的尾纤处与FBG(33)连接。2.根据权利要求1所述的基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器,其特征在于:所述光纤F-P结构(32)利用浓度40%氢氟酸腐蚀单模光纤(31)端面并与另一端切屏的光纤熔接而成。3.根据权利要求1所述的基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器,其特征在于:所述光纤F-P结构(32)的反射光谱条纹对比度为10dB,并且光纤F-P结构(32)的周期为24nm所述FBG(33)的峰值为1563.5nm。4.基于光纤F-P腔级联FBG结构的温度及应变双参量光纤传感器的测量方法,其特征在于,包括以下步骤:S1、理论分析:将光纤在40%浓度的氢氟酸中腐蚀20min后与一端切平光纤相互熔接形成光纤F-P结构(32),并将一端与FBG(33)串联形成双参数测量的传感器,当环境温度和应变发生变化时,光纤F-P结构(32)的腔长以及光栅周期、栅距等会发生改变,反射光谱的波长也会随之发生漂移,假定光纤F-P结构(32)和FBG(33)温度与应变感应的反射光谱的波长变化线性且独立无关,因此只要确定灵敏系数矩阵就可以通过光纤F-P结构(32)和FBG(33)波长变化值求解方程得到相应的温度与应变值;S2、光纤传感器制备:将单模光纤的一端去除涂覆层,并用酒精清洁干净,然后用切割刀切平,将光纤置于在40%浓度的氢氟酸中腐蚀20min后与一端切平光纤相互熔接形成光纤F-P结构(32),并将一端与FBG(33)串联形成双参数测量的传感器;S3、双参数特性研究:光纤F-P结构(32)干涉条纹波长以及FBG(33)峰值均随着应变的变化呈线性变化,且都随着加载量的增加向着长波方向漂移,随着应变量的卸载向短波方向漂移;其中光纤F-P结构(32)结构的监测点A处在相对应变量0με~240με范围内波长从1555.936nm漂移至1556.336nm,在240με~0με内波长从1556.336nm漂移至1555.936nm,加载灵敏度为1.63pm/με,卸载灵敏度为-1.65pm/με,线性度均达到0.99以上;FBG在相对应变量0με~240με范围内波长从1563.509nm漂移至1563.563nm,在240με~0με内波长从1563.563nm漂移至1563.5...
【专利技术属性】
技术研发人员:祝连庆,上官春梅,张雯,何巍,董明利,李红,娄小平,
申请(专利权)人:北京信息科技大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。