一种智能化多回路电动汽车热管理系统技术方案

技术编号:17362930 阅读:32 留言:0更新日期:2018-02-28 12:27
本实用新型专利技术涉及一种智能化多回路电动汽车热管理系统,包括动力电池组、驱动电机、电机控制器、车载充电机、DC/DC转换器、电池散热器、电池制冷器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、热交换器、电动压缩机、冷凝器、储液干燥壶、蒸发器、电子膨胀阀、暖风芯体,通过管路及设于管路中的直通阀、三向阀和四通阀进行相互连接,形成多个热管理控制回路。与现有技术相比,本实用新型专利技术形成了满足不同冷却或加热需求的多个回路,这些回路根据电动汽车的动力电池组、电驱模块以及乘员舱空调的特点及工作状态进行选择性开闭,保证电动汽车的温度均衡,保证电动汽车高效运行,系统节能显著,汽车续航里程变长,车辆经济性更佳。

【技术实现步骤摘要】
一种智能化多回路电动汽车热管理系统
本技术属于电动汽车
,具体涉及一种智能化多回路电动汽车热管理系统。
技术介绍
随着世界各国对环境污染以及石油等能源消耗问题越来越重视,电动汽车的发展前景被普遍看好,其产销量逐年上升,未来有望完全取代传统燃油汽车。电动汽车相比传统汽车,无尾气排放,对环境非常友好,但电动汽车现阶段也存在一些发展瓶颈,其充电时间较长,满电续航里程相比传统汽车没有优势。为了在续航里程上减小与传统汽车的差距,这就要求电动汽车尽可能地节能。目前已上市的电动汽车,其热管理系统的节能性大多不够显著,且空调系统、动力电池组冷却系统以及电驱模块冷却系统或者彼此之间不相关联,或者关联性不够;当动力电池组进行冷却时,通常要么是过于依赖空调制冷,要么依靠在冷凝器前方加设一个电池散热器来进行冷却,不仅会对空调的性能以及电驱系统的散热效果造成负面影响,导致前端模块的效率降低,而且会增加整车的风阻,使得车辆的动力性和经济性变差。当动力电池和乘员舱需要加热采暖时,通常过于依赖PTC加热器,导致车辆续航里程变得更短。中国专利CN205768485U公开了一种电动汽车整车智能热管理系统,由车头换热器、乘客舱换热器、电视、电控系统、驱动电机水泵、四通换向阀、压缩机、电磁揭、两个三逞球阀、蒸发器、水泵、电池握、热管、电池换热器组成,使整车的空调系统、驱动电机电控系统、电池组热管理系统三大热管理系统的热量能移充分地互相利用,减少散热加热对电池能量的需求,保证各电池单体之间的温度均衡,延长续航里程、电池系统的使用寿命,但该系统形成的控制回路比较少,不能有效发挥系统内各部件的功能。
技术实现思路
本技术的目的就是为了解决上述问题而提供一种智能化多回路电动汽车热管理系统。本技术的目的通过以下技术方案实现:一种智能化多回路电动汽车热管理系统,包括动力电池组、电驱模块、车载充电机、DC/DC转换器、电池散热器、电池制冷器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、热交换器、电动压缩机、冷凝器、蒸发器、储液干燥壶、暖风芯体,所述的电驱模块包括驱动电机和电机控制器,各组件通过管路以及设于管路中的四通阀、三向阀、直通阀以及电子膨胀阀连接形成多个分别对动力电池组、电驱模块以及乘员舱空调进行热管理控制的回路,包括:对动力电池组进行热管理控制的:动力电池组温度均衡内部回路、动力电池组常温冷却内部回路、动力电池组空调制冷外部回路、动力电池组空调制冷内部回路、动力电池组低温加热内部回路;对乘员舱空调进行热管理控制的:乘员舱制冷回路、乘员舱采暖大循环回路、乘员舱采暖小循环回路;对电驱模块进行热管理控制的:电驱模块冷却回路、驱动电机油冷回路。进一步地,所述的动力电池组温度均衡内部回路由动力电池组、四通阀、电动水泵、三向阀以及PTC加热器串联连接形成,PTC加热器不工作;所述的动力电池组低温加热内部回路由动力电池组、四通阀、电动水泵、三向阀以及PTC加热器串联连接形成,PTC加热器工作;所述的动力电池组常温冷却内部回路由动力电池组、四通阀、电动水泵、三向阀以及电池散热器串联连接形成;所述的动力电池组空调制冷外部回路由电动压缩机、冷凝器、储液干燥壶、电子膨胀阀以及电池制冷器串联连接形成;所述的动力电池组空调制冷内部回路由动力电池组、四通阀、电动水泵、三向阀以及电池制冷器串联连接形成。进一步地,所述的电驱模块冷却回路由电动水泵、直通阀、电机控制器、热交换器、三向阀与电机散热器、四通阀以及膨胀水箱串联连接形成;所述的驱动电机油冷回路由驱动电机、热交换器、电动油泵串联连接形成。进一步地,所述的乘员舱制冷回路由电动压缩机、冷凝器、储液干燥壶、电子膨胀阀以及蒸发器串联连接形成;所述的乘员舱采暖大循环回路由所述的电驱模块冷却回路与直通阀、暖风芯体串联连接形成;所述的乘员舱采暖小循环回路由暖风芯体、电动水泵、直通阀、PTC加热器串联连接形成。所述的电动水泵、电动油泵、直通阀、三向阀、四通阀、电子膨胀阀连接整车控制器,通过控制四通阀的开度,所述的动力电池组与电驱模块进行串联或并联连接。该热管理系统在动力电池组、驱动电机、电机控制器、DC/DC转换器和车载充电机的内部以及冷却回路的内部设有温度传感器,温度传感器连接整车控制器并将采集的温度输出至整车控制器。所述的DC/DC转换器与直通阀串联,并与动力电池组并联;所述的车载充电机与电驱模块并联。进一步地,所述的驱动电机包括第一驱动电机、第二驱动电机;所述的电机控制器包括第一电机控制器、第二电机控制器;所述的电动水泵包括第一电动水泵、第二电动水泵、第三电动水泵、第四电动水泵;所述的电动油泵包括第一电动油泵、第二电动油泵;所述的PTC加热器包括第一PTC加热器、第二PTC加热器;所述的热交换器包括第一热交换器、第二热交换器;所述的电子膨胀阀包括第一电子膨胀阀、第二电子膨胀阀;所述的三向阀包括第一三向阀、第二三向阀、第三三向阀、第四三向阀;所述的直通阀包括第一直通阀、第二直通阀、第三直通阀、第四直通阀。所述的第一电动水泵、第一电机控制器、第一热交换器串联,并与串联的第二电动水泵、第二电机控制器和第二热交换器形成并联。该热管理系统在电机散热器与电池散热器的旁边设置辅助散热并连接整车控制器的电动风扇,包括第一电动风扇和第二电动风扇,该热管理系统在蒸发器的旁边设置连接整车控制器的电动鼓风机。散热器与电动风扇安装位置比较灵活,可根据电动汽车的车身结构特点来进行布置,可以靠近车头,也可设在车尾,或在车身其他位置,可根据需要设置一个或多个电动风扇。本技术各热管理控制回路的具体原理为:系统中各电动水泵、电动油泵、电动风扇、电动鼓风机、直通阀、三向阀、四通阀以及电子膨胀阀都连接整车控制器,热管理系统在动力电池组、驱动电机、电机控制器、DC/DC转换器和车载充电机的内部以及各回路的内部设有温度传感器,温度传感器连接整车控制器并将采集的温度信息输出至整车控制器,整车控制器根据温度信号进行决策,控制电动水泵、电动油泵、电动风扇、电动鼓风机、四通阀、直通阀、三向阀以及电子膨胀阀的开闭,及时有效地调节系统的热量交换,通过控制各三向阀、四通阀、直通阀和电子膨胀阀的开度形成满足不同的冷却或加热需求的热管理控制回路。当动力电池组的温度处于合理区间(对于锂离子电池来说,通常认为其温度在0-40℃范围是处于合理区间),但各单体电池之间的温差过大,超出合理范围(通常认为单体电池之间温差小于5℃为合理范围)时,需要对动力电池组进行温度均衡,所述的动力电池组温度均衡内部回路,可有效减小动力电池组各个单体电池之间的温差。当动力电池组的温度偏高(对于锂离子电池来说,通常认为其温度高于40℃时属于温度偏高)时,此时需要对动力电池组进行冷却,所述的动力电池组常温冷却内部回路,可有效降低动力电池组的温度。当外界空气温度过高或动力电池组发热功率过大时,动力电池组常温冷却内部回路无法满足动力电池组的散热需求,此时需要借助空调制冷来对动力电池组进行冷却,所述的动力电池组空调制冷外部回路和动力电池组空调制冷内部回路,可使动力电池组的温度迅速降低。当电动汽车处于停车充电状态,如果动力电池组的温度偏低(对于锂离子电池来说,通常认为其温度低于0℃时属本文档来自技高网
...
一种智能化多回路电动汽车热管理系统

【技术保护点】
一种智能化多回路电动汽车热管理系统,包括动力电池组(38)、电驱模块、车载充电机(7)、DC/DC转换器(40)、电池散热器(35)、电池制冷器(23)、电机散热器(15)、电动水泵、电动油泵、膨胀水箱(17)、PTC加热器、热交换器、电动压缩机(24)、冷凝器(18)、蒸发器(21)、储液干燥壶(19)、暖风芯体(27),所述的电驱模块包括驱动电机和电机控制器,其特征在于,各组件通过管路以及设于管路中的四通阀(16)、三向阀、直通阀以及电子膨胀阀连接形成多个分别对动力电池组、电驱模块以及乘员舱空调进行热管理控制的回路,包括:对动力电池组进行热管理控制的:动力电池组温度均衡内部回路、动力电池组常温冷却内部回路、动力电池组空调制冷外部回路、动力电池组空调制冷内部回路、动力电池组低温加热内部回路;对乘员舱空调进行热管理控制的:乘员舱制冷回路、乘员舱采暖大循环回路、乘员舱采暖小循环回路;对电驱模块进行热管理控制的:电驱模块冷却回路、驱动电机油冷回路。

【技术特征摘要】
1.一种智能化多回路电动汽车热管理系统,包括动力电池组(38)、电驱模块、车载充电机(7)、DC/DC转换器(40)、电池散热器(35)、电池制冷器(23)、电机散热器(15)、电动水泵、电动油泵、膨胀水箱(17)、PTC加热器、热交换器、电动压缩机(24)、冷凝器(18)、蒸发器(21)、储液干燥壶(19)、暖风芯体(27),所述的电驱模块包括驱动电机和电机控制器,其特征在于,各组件通过管路以及设于管路中的四通阀(16)、三向阀、直通阀以及电子膨胀阀连接形成多个分别对动力电池组、电驱模块以及乘员舱空调进行热管理控制的回路,包括:对动力电池组进行热管理控制的:动力电池组温度均衡内部回路、动力电池组常温冷却内部回路、动力电池组空调制冷外部回路、动力电池组空调制冷内部回路、动力电池组低温加热内部回路;对乘员舱空调进行热管理控制的:乘员舱制冷回路、乘员舱采暖大循环回路、乘员舱采暖小循环回路;对电驱模块进行热管理控制的:电驱模块冷却回路、驱动电机油冷回路。2.根据权利要求1所述的一种智能化多回路电动汽车热管理系统,其特征在于,所述的动力电池组温度均衡内部回路由动力电池组(38)、四通阀(16)、电动水泵、三向阀以及PTC加热器串联连接形成,PTC加热器不工作;所述的动力电池组低温加热内部回路由动力电池组(38)、四通阀(16)、电动水泵、三向阀以及PTC加热器串联连接形成,PTC加热器工作;所述的动力电池组常温冷却内部回路由动力电池组(38)、四通阀(16)、电动水泵、三向阀以及电池散热器(35)串联连接形成;所述的动力电池组空调制冷外部回路由电动压缩机(24)、冷凝器(18)、储液干燥壶(19)、电子膨胀阀以及电池制冷器(23)串联连接形成;所述的动力电池组空调制冷内部回路由动力电池组(38)、四通阀(16)、电动水泵、三向阀以及电池制冷器(23)串联连接形成。3.根据权利要求1所述的一种智能化多回路电动汽车热管理系统,其特征在于,所述的电驱模块冷却回路由电动水泵、直通阀、电机控制器、热交换器、三向阀与电机散热器(15)、四通阀(16)以及膨胀水箱(17)串联连接形成;所述的驱动电机油冷回路由驱动电机、热交换器、电动油泵串联连接形成。4.根据权利要求3所述的一种智能化多回路电动汽车热管理系统,其特征在于,所述的乘员舱制冷回路由电动压缩机(24)、冷凝器(18)、储液干燥壶(19)、电子膨胀阀以及蒸发器(21)串联连接形成;所述的乘员舱采暖大循环回路...

【专利技术属性】
技术研发人员:夏应波张志伟吴云飞
申请(专利权)人:上海思致汽车工程技术有限公司
类型:新型
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1