当前位置: 首页 > 专利查询>上海大学专利>正文

基于用户群优化的图像分类仿脑存储方法技术

技术编号:16873804 阅读:66 留言:0更新日期:2017-12-23 11:45
本发明专利技术提出一种基于人脑存储模式的分布式图像文件分类存储方法,本方法的操作步骤是:(1),建立图像数据表示模型;(2),构建仿脑分布式存储系统;(3),图像自动标注和分类;(4),进行标注修正。该方法能够通过自动标注来取得对图像的自动标注结果,然后通过用户对图片的理解进行标注修正。该方法也有根据用户对图像类别的需求反馈相似图像的功能。用户可以获取指定图像的分类结果和与其相类似的图片。同时用户可以对得到的分类结果进行人工干预修正,进而改进图像分类的准确率。

Image classification based on user group optimization

The invention provides a distributed image file storage mode brain classification storage method based on the operation steps of this method are: (1), the establishment of image data representation model; (2), the construction of distributed storage system imitating the brain; (3), automatic image annotation and classification; (4), marked correction. This method can automatically annotate the image by automatic annotation, and then annotate it by the user's understanding of the picture. The method also has the function of feedback to similar images according to the user's needs for the image category. The user can get the classified results of the specified image and the similar pictures. At the same time, the user can make artificial intervention correction to the obtained classification results, and then improve the accuracy of image classification.

【技术实现步骤摘要】
基于用户群优化的图像分类仿脑存储方法
本专利技术涉及计算机人工智能领域,尤其涉及一种基于用户群优化的图像分类仿脑存储方法,是一种图像仿脑分布式存储和一种把图片特征与传统分类器相结合的图像分类存储方法。
技术介绍
当前信息时代,数据规模增长速度远超我们的预期,存在大量的图片文件。在这种情况下,集中式文件系统不能有效地管理这些图像文件。传统的图像管理方法是基于文本的检索。虽然这种方法很容易实现,但是文本描述图像难以充分表达丰富的内容。此外,人工标注是费时又费力。图像种类很丰富,同样就有许多存储不同图像类型的方法,现存的有一种数据结构和一种用于多分辨率图像的高效索引数据库。这个数据库具有以下特点:多数据源图像数据、基于分布式的存储和管理以及集成于其他的立体数据库管理软件中。图像数据库是一个新兴研究领域,同时也存在很多没有解决的问题。因此,它是值得深入研究的。另外,还有一种数据处理系统并和特别的分布式存储和检索系统相关。这个系统设计意图是让用户来决定图像对象的层级和安全的位置。当这些数据增长时,这个系统将很难有效处理数据。在存储管理大量数据的领域,通常采用的都是分布式存储。图像存储也不例外,当今专业图像编辑工作的变换方法,这项研究阐明了使用分布式计算引擎和文件系统来管理大量数据集的可行性。现存的网络共享模型不能从根本上消除“信息孤岛”的问题。除此之外,目前传统的图像分类存储方法都是单一模式型的,换言之即存储系统主要负责存取,而分类系统仅负责给图像标注,最后将分类信息传回存储系统。这种方法对于用户而言不便于操作。因此当用户需要的图像被系统分类错误的时候,系统将无法返回正确的类别,使得传统的图像分类存储方法无法满足用户的需求。现有的图像标注分类大致分为手工标注和自动标注两种标注方式,其中纯手工标注需要耗费大量的人力物力,从而变得不切实际。图像的自动标注通过机器学习的方法在一定程度上能够解决图像的标注问题,但是由于自动标注的特征感知并不完善,很难反映图像所表达的概念,自动标注的准确率不高。因此,需要一种手工标注和自动标注相结合的标注方法。
技术实现思路
本专利技术的目的是针对已有技术存在的不足,提供一种基于用户群优化的图像分类仿脑存储方法,是一种仿脑分布式图像存储方法和一种将图像特征和传统分类器相结合的图像分类方法。能较准确的得到图像分类结果,并进行优化存储。为达到专利技术的目的,本专利技术的构思是:为了有效存储现有的图像数据,本专利技术提出一种基于人脑存储模式的分布式图像文件存储方法。另外,为了克服现有的图像标注方法在准确率上的不足,提供一种新的图像标注方法,该方法不仅能够通过自动标注来取得对图像的自动标注结果,而且可以通过用户对图片的理解进行标注修正。同时,该方法也有根据用户对图像类别的需求返回相似图像的功能。根据上述专利技术构思,本专利技术采用下述技术方案:一种基于用户群优化的图像分类仿脑存储方法,其操作步骤如下:a)建立图像数据表示模型:图像数据模型借助模糊数学,使用五个模糊集来表示一幅图像的各层属性,同时保证这些图像的唯一性:图像的原始数据、图像的基本属性(包括文件名、图像格式、创建时间等)、图像的低级特征(包括颜色、纹理、形状等)、图像的语义特征(包括对图像的主观解释、低级特征理解等)和图像低级特征和语义特征的关系。b)构建仿脑分布式存储系统:根据人脑存储数据的特点,构建一个类似的图像分布式存储系统;将属性相近的图像数据存储在物理上相临近的位置;这样便于联想访问和区域访问,提高访问的效率和质量,优化存储调度以及资源利用率。c)图像自动标注和分类:使用四个方向的Gabor滤波值和一、二、三阶颜色矩组成特征值,使用支持向量机进行图片训练,并利用训练好的模型进行图像的自动标注和分类。d)进行标注修正:对自动标注结果进行人工干预,用户对返回的标注结果进行判断并更正,反馈给标注和分类模块,提高分类的准确率。本专利技术与已有技术相比较,具有如下显而易见的突出实质性特点和显著的技术进步:提出一种仿脑分布式图像存储系统结构和一种图像自动标准分类方法,在图像文件存储效率和图像标注分类结果的参考价值上都有显著的提升,对于大规模图像处理和存储有很大的现实意义。附图说明附图1是本专利技术的基于用户群优化的图像分类仿脑存储和程序框图。附图2是本专利技术的数据表示程序框图。附图3是本专利技术的仿脑分布式存储系统结构示意图。附图4是本专利技术的分类处理流程框图。具体实施方式本专利技术的优选实施例结合附图详述如下:实施例一:参见图1,本基于用户群优化的图像分类仿脑存储方法,操作步骤如下:a)建立图像数据表示模型:用于表示一幅图像的基本模型。b)构建仿脑分布式存储系统:实现分布式的图像文件仿脑存储。c)图像自动标注和分类:提出一种图像自动标注和分类的方法。d)进行标注修正:通过人工干预来提高标注图像准确率。实施例二:本实施例与实施例一基本相同,特别之处如下:参见图2,上述步骤a)建立图像数据表示模型的方法如下:图像数据模型借助模糊数学,使用五个模糊集来表示一幅图像的各层属性,同时保证这些图像的唯一性:a)图像的原始数据;b)图像的基本属性(包括文件名、图像格式、创建时间等);c)图像的低级特征(包括颜色、纹理、形状等);d)图像的语义特征(包括对图像的主观解释、低级特征理解等);e)图像低级特征和语义特征之间的关系。具体描述如下:图像数据表示模型G:G=(D,A,L,S,R)其中,D表示图像的原始数据流。表示图像的基本属性:A={(jpg,1.0),(png,1.0),(bmp,1.0),......}L表示图像的低级特征:L={(红色,0.6),(蓝色,0.3),(绿色,0.1,...}S表示图像的语义特征:S={(花,0.5),(树,0.2)(汽车,0.2),...}R表示图像L和S之间的关系:R=L×S通过五个属性来表示一副图像,并保证图像的唯一性。实例描述如下:实施例三:本实施例与实施例一基本相同,特别之处如下:参见图3,上述步骤b)中的仿脑分布式存储方法是:根据人脑存储数据的特点,构建一个类似的图像分布式存储系统。将属性相近的图像数据存储在物理上相临近的位置。这样便于联想访问和区域访问,提高访问的效率和质量,优化存储调度以及资源利用率。实施例四:本实施例与实施例一基本相同,特别之处如下:上述步骤c)图像自动标注和分类的方法是:为了克服现有的图像标注方法在准确率上的不足,提供一种全新的图像标注分类方法,该方法不仅能够通过自动标注来取得对图像的标注结果,而且可以通过用户对图片的理解进行手动的标注修正。同时,该方法也有根据用户对图像类别的需求反馈相似图像的功能。本实施例用的自动标注方法由以下几个步骤实现:1.首先需要对训练图像进行分类:1)对于每张图片,分别取其四个角度的二维Gabor滤波图像作为其特征值的一部分。Gabor滤波的算法如下所示:其中:x,y为像素坐标,v的取值决定了Gabor滤波的波长,u取值表示Gabor核函数的方向,K表示方向的总数。该特征与人眼作用相仿,因此常被用作纹理识别。2)对于每张图片,采用颜色矩作为颜色特征,分别提取颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)。三个颜色矩的定义如下所示:一阶矩:二阶矩:三阶矩本文档来自技高网
...
基于用户群优化的图像分类仿脑存储方法

【技术保护点】
一种基于用户群优化的图像分类仿脑存储方法,特征在于操作步骤如下:a)建立图像数据表示模型:用于表示一幅图像的基本模型。b)构建仿脑分布式存储系统:实现分布式的图像文件仿脑存储。c)图像自动标注和分类:提出一种图像自动标注和分类的方法。d)进行标注修正:通过人工干预来提高标注图像准确率。

【技术特征摘要】
1.一种基于用户群优化的图像分类仿脑存储方法,特征在于操作步骤如下:a)建立图像数据表示模型:用于表示一幅图像的基本模型。b)构建仿脑分布式存储系统:实现分布式的图像文件仿脑存储。c)图像自动标注和分类:提出一种图像自动标注和分类的方法。d)进行标注修正:通过人工干预来提高标注图像准确率。2.根据权利要求1所述的基于用户群优化的图像分类仿脑存储方法,其特征在于步骤a)建立图像数据表示模型的方法是:图像数据模型借助模糊数学,使用五个模糊集来表示一幅图像的各层属性,同时保证这些图像的唯一性:图像的原始数据、图像的基本属性——包括文件名、图像格式和创建时间、图像的低级特征——包括颜色、纹理和形状、图像的语义特征——包括对图像的主观解释和低级特征理解以及图像低级特征和语义特征的关系。3.根据权利要求1所述的基于...

【专利技术属性】
技术研发人员:武星
申请(专利权)人:上海大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1