一种保持地标建筑形状特征的自动符号化方法技术

技术编号:16779452 阅读:30 留言:0更新日期:2017-12-12 23:48
本发明专利技术公开一种保持地标建筑形状特征的自动符号化方法,具体包括:将目标实体对象从影像中分割出来;对分割后的图像二值化,并提取实体对象的边缘形态特征;对提取边缘线结果矢量化,并采用保持关键点的线形状简化方法优化提取结果,保证地标建筑符号的平滑性以及规则性。本发明专利技术与传统地标建筑的符号设计方式相比,能够快速的生成,并且保持形状特征,不仅提高了地图使用时用户的空间认知能力,还可以用于静态和多媒体动态的地图表达,而且能够服务于地图自动更新,建筑变化检测等多个方面。

An automatic Symbolization Method for keeping the shape features of the landmark building

The invention discloses a shape keeping landmark automatic symbolic methods, including: the target entity object segmentation from the image; the segmented image binarization, edge extraction and morphological characteristics of the entity object; to extract edge line vectorization results, and the key point line shape simplification the optimization of extraction method, ensure the smoothness of the landmark symbols and rules of. Compared with the traditional design method of the present invention signed a landmark building, can quickly generate and maintain the shape characteristics, not only improves the spatial cognitive map using the user, but also can be used to express the static and dynamic multimedia map, and can serve the map automatically updated, many aspects of building change detection.

【技术实现步骤摘要】
一种保持地标建筑形状特征的自动符号化方法
本专利技术涉及地图制作
,具体为一种保持地标建筑形状特征的自动符号化方法。
技术介绍
地图作为一种将空间信息传递给读者的工具,地图语言是不可缺少的媒介,而地图符号是地图的语言单位,是可视化表达空间信息内容的基础单元。在地图上,地标建筑符号是人们使用地图时进行空间认知匹配的重要特征,而目前地标建筑的符号设计通常采用两种方式,第一种是基于规则的几何形状进行统一化表达,这种方式可以以自动化方式进行符号化,但无法表达地标建筑本身的几何形状特征。第二种常见于旅游专题图或者个性化地图,是采用人工设计方式,同时保持地标建筑的几何形状,但这种人工方式耗时耗力,尤其对于大范围内大量地标建筑,可行性不高,并且由于人为主观因素影响,对符号设计人员的专业要求较高。如何快速自动并且能够的保持形状特征的自动符号化技术已经成为目前地图学领域研究的前沿问题。因此自动、高效的保持形状特征的符号化是目前地图学和地图服务的主要关注点之一。
技术实现思路
针对上述问题,本专利技术的目的在于提供一种能够提高地图使用时用户的空间认知能力,并可用于静态和多媒体动态的地图表达,服务于地图自动更新,建筑变化检测等多个方面的保持地标建筑形状特征的自动符号化方法。技术方案如下:一种保持地标建筑形状特征的自动符号化方法,包括以下步骤:步骤1:将目标实体对象从影像中分割出来;步骤2:对分割后的图像二值化,并提取实体对象的边缘形态特征;步骤3:对提取边缘线结果矢量化,并采用保持关键点的线形状简化方法优化提取结果;步骤4:存储优化处理之后的符号结果。进一步的,所述步骤1的具体步骤如下:步骤1.1:影像数据初始化;步骤1.2:进行能量最小化分割迭代;步骤1.3:采用bordermatting对分割的边界进行平滑处理。更进一步的,所述步骤1.1中初始化的具体步骤为:步骤1.11:输入影像数据,用z=(z1,z2,…,zN)表示图像像素组成的数组,α=(α1,α2,…,αN)表示像素对应的不透明数组,其中0≤αN≤1,α取0或1;对可能目标手动标定矩形框,方框外的像素全部作为背景像素TB,方框内的像素作为前景像素TU;步骤1.12:遍历TB内的每一像素,初始化其标签αn=0,即为背景像素;对TU内的每个像素,初始化其标签αn=1,即作为“可能是目标”的像素;步骤1.13:分别用具有K个高斯分量的全协方差混合高斯模型对前景和背景区域的像素分别建立模型;其中K=(k1,...,kn,...,kN),kn∈{1,2,...k};步骤1.14:从背景和前景各自相应的区域里获取像素点,生成各自的灰度直方图分布θ:θ={π(α,k),μ(α,k),Σ(α,k),α=0,1,k=1...K}式中,π表示每个高斯分量的权重,μ表示每个高斯分量的均值向量,∑表示RGB三个通道的协方差矩阵;步骤1.15:计算每个混合高斯密度模型D:其中且0≤πi≤1对上式取负对数化简为:步骤1.16:计算区域项U,表示一个像素被归为目标或者背景的概率的负对数,以确定图的t-link的权值:步骤1.17:计算平滑项V,表示邻域像素m和n之间的不连续的惩罚,在RGB空间中,采用欧式距离衡量两像素的相似性,则n-link的权值通过下式确定:式中,γ为常数,β由图像的对比度确定,即:β=(2((zm-zn)2))-1步骤1.18:计算整个图形的Gibbs能量函数E:E(α,k,θ,z)=U(α,k,θ,z)+V(α,z)。更进一步的,所述步骤1.2中的迭代过程的具体步骤为:步骤1.21:对图像中每个像素n,把其RGB值带入对应区域GMM中的每一个高斯分量中,取概率最大的第kn个高斯分量:步骤1.22:对于给定的图像数据z,学习优化GMM的参数;步骤1.23:根据计算得到的能量项构建图,图的顶点为像素点,图的边包括两类;一类边为每个顶点与代表背景的Sink汇点t或代表前景的源点Source连接的边,该类边的权值通过Gibbs能量函数E的第一项能量项表示;另一类边为每个顶点与其邻域顶点连接的边,该类边的权值通过Gibbs能量函数E的第二项能量项来表示;步骤1.24:计算每个顶点与Sink汇点t或源点Source连接的权值t-link,也即计算Gibbs能量函数E的第一个能量项;计算两个邻域顶点之间连接的权值n-link,也即计算Gibbs能量函数E的第二个能量项;步骤1.25:通过最大流算法确定图的最小割,也即完成图像的分割;算法如下式所示,步骤1.26:重复步骤1.21到1.25,直至能量收敛。更进一步的,所述步骤2的具体过程如下:步骤2.1:将图像分割后的结果图二值化,目标设为1,背景设为0;步骤2.2:任意一个像素点Q1,其邻域的8个点顺时针绕中新点分别记为Q2,Q3,…Q9;步骤2.3:定义N(Q1)为Q1的所有非零邻点的个数,遍历所有像素点,统计每个像素点的N(Q1);步骤2.4:将满足条件N(Q1)>6的像素点的灰度值设为0,否则设为1。更进一步的,所述步骤3的具体过程如下:步骤3.1:将提取的边缘栅格数据转换为矢量数据,并记录各个点坐标;步骤3.2:边缘数据分段处理,确定对称的建筑物的重心,沿重心进行对称分割成两条曲线,并给定初始阈值;步骤3.3:针对任意段曲线段,设曲线由点序P1,P2,…Pn构成,其中P1、Pn分别为起始点和终止点;步骤3.4:计算所有P1到Pn之间的内点Pi(i=2,3,…,n-1)到直线P1Pn之间的距离Di,选取其中距离最大的点Pk;步骤3.5:如果Dk小于给定阈值,则剔除P1到Pn之间的全部内点;步骤3.6:反之,保留关键点Pk,利用点Pk,将曲线分为两段:P1-Pk和Pk-Pn;步骤3.7:重复步骤3.3至3.6,对边缘线上的点进行化简处理,直至两端点之间的曲线上的点与两端点连线的距离最大值小于给定的阈值为止。本专利技术的有效效果是:本专利技术与传统地标建筑的符号设计方式相比,能够快速的生成,并且保持形状特征,不仅提高了地图使用时用户的空间认知能力,还可以用于静态和多媒体动态的地图表达,而且能够服务于地图自动更新,建筑变化检测等多个方面。附图说明图1为本专利技术保持地标建筑形状特征的自动符号化方法的总流程图。图2为本专利技术保持地标建筑形状特征的自动符号化方法中图像分割算法流程图。图3为本专利技术保持地标建筑形状特征的自动符号化方法中建筑外形特征提取流程图。图4为本专利技术保持地标建筑形状特征的自动符号化方法中线形状简化算法流程图。具体实施方式下面结合附图和具体实施例对本专利技术做进一步详细说明,为实现保持几何形态特征的地标建筑自动符号化目标,本专利技术提供一种面向独立建筑保持形状特征的实时自动的符号化方法,总体技术流程如图1所示,具体包括:1)首先将目标实体对象从影像中分割出来;2)对分割后的图像二值化,并提取实体对象的边缘形态特征;3)对提取边缘线结果矢量化,并采用保持关键点的线形状简化方法优化提取结果,保证地标建筑符号的平滑性以及规则性。下面对上述三个关键步骤进行详细说明。步骤1:图像分割。本实施例主要针对独立地物实体进行自动符号化,而获取的影像、照片中不可避免的含有除地标建筑以外的其他干扰信息,因此首先采用grabcut算法对影像进行分割。本文档来自技高网...
一种保持地标建筑形状特征的自动符号化方法

【技术保护点】
一种保持地标建筑形状特征的自动符号化方法,其特征在于,包括以下步骤:步骤1:将目标实体对象从影像中分割出来;步骤2:对分割后的图像二值化,并提取实体对象的边缘形态特征;步骤3:对提取边缘线结果矢量化,并采用保持关键点的线形状简化方法优化提取结果;步骤4:存储优化处理之后的符号结果。

【技术特征摘要】
1.一种保持地标建筑形状特征的自动符号化方法,其特征在于,包括以下步骤:步骤1:将目标实体对象从影像中分割出来;步骤2:对分割后的图像二值化,并提取实体对象的边缘形态特征;步骤3:对提取边缘线结果矢量化,并采用保持关键点的线形状简化方法优化提取结果;步骤4:存储优化处理之后的符号结果。2.根据权利要求1所述的保持地标建筑形状特征的自动符号化方法,其特征在于,所述步骤1的具体步骤如下:步骤1.1:影像数据初始化;步骤1.2:进行能量最小化分割迭代;步骤1.3:采用bordermatting对分割的边界进行平滑处理。3.根据权利要求2所述的保持地标建筑形状特征的自动符号化方法,其特征在于,所述步骤1.1中初始化的具体步骤为:步骤1.11:输入影像数据,用z=(z1,z2,…,zN)表示图像像素组成的数组,α=(α1,α2,…,αN)表示像素对应的不透明数组,其中0≤αN≤1,α取0或1;对可能目标手动标定矩形框,方框外的像素全部作为背景像素TB,方框内的像素作为前景像素TU;步骤1.12:遍历TB内的每一像素,初始化其标签αn=0,即为背景像素;对TU内的每个像素,初始化其标签αn=1,即作为“可能是目标”的像素;步骤1.13:分别用具有K个高斯分量的全协方差混合高斯模型对前景和背景区域的像素分别建立模型;其中K=(k1,...,kn,...,kN),kn∈{1,2,...k};步骤1.14:从背景和前景各自相应的区域里获取像素点,生成各自的灰度直方图分布θ:θ={π(α,k),μ(α,k),Σ(α,k),α=0,1,k=1...K}式中,π表示每个高斯分量的权重,μ表示每个高斯分量的均值向量,∑表示RGB三个通道的协方差矩阵;步骤1.15:计算每个混合高斯密度模型D:其中且0≤πi≤1对上式取负对数化简为:步骤1.16:计算区域项U,表示一个像素被归为目标或者背景的概率的负对数,以确定图的t-link的权值:步骤1.17:计算平滑项V,表示邻域像素m和n之间的不连续的惩罚,在RGB空间中,采用欧式距离衡量两像素的相似性,则n-link的权值通过下式确定:

【专利技术属性】
技术研发人员:遆鹏王俪颖喻崇湖
申请(专利权)人:西南交通大学
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1