一种疏松砂岩径向孔水力压裂物理模拟装置和方法制造方法及图纸

技术编号:16585194 阅读:94 留言:0更新日期:2017-11-18 13:22
本发明专利技术涉及一种疏松砂岩径向孔水力压裂物理模拟装置和方法,该疏松砂岩径向孔水力压裂物理模拟装置包括泵入装置,中间容器,压裂液管线,模拟井筒,模拟径向孔,压裂试件以及声采集装置。本发明专利技术的有益效果是:由于采用上述技术方案,本发明专利技术具有结构简单,使用方便,在实验过程中采用合适的方法来预设径向孔,保证径向孔区域的孔隙度明显大于周围岩样的孔隙度在压裂过程中没有对试件内部的裂缝扩展及延伸情况进行实时的监测。

Physical simulation device and method for loose sandstone radial hole hydraulic fracturing

The invention relates to a device and method for simulation of loose sandstone radial hole hydraulic fracturing physical, the loose sandstone radial hole hydraulic fracturing physical simulation device comprises a pump device, a middle container, simulation wellbore fracturing fluid pipeline, simulation of radial hole, fracturing specimen and sound collecting device. The invention has the advantages that: by adopting the technical scheme, the invention has the advantages of simple structure, convenient use, in the course of the experiment, using appropriate methods to ensure the preset radial hole, the radial hole area is significantly greater than the surrounding rock porosity porosity in the fracturing process of internal cracks without expansion and real-time monitoring extension.

【技术实现步骤摘要】
一种疏松砂岩径向孔水力压裂物理模拟装置和方法
本专利技术涉及一种物理模拟方法,具体是一种能够模拟疏松砂岩径向孔水力压裂过程,并且同时监测和探明裂缝起裂位置和延伸方向的物理模拟装置方法。
技术介绍
目前国内对径向钻孔技术的研究主要是在常规储层领域,针对疏松砂岩油藏的径向钻孔立体开发的基础理论和方法研究尚显不足。与此同时,水力压裂在油田开发过程中得到了广泛的运用,取得的成效也是显著的。但人们对压裂过程中所产生的裂缝的认识还比较低,比如裂缝的起裂位置和延伸方向等等。在实验室中,通过物理模拟方法可以有效地来探究压裂过程中裂缝的扩展规律,以往的实验研究已经获得了不少成果,但由于实验的侧重点和条件的局限性等因素,有一些问题还是未能得到有效研究。例如,在实验过程中未能采用合适的方法来预设径向孔,以致无法保证径向孔区域的孔隙度明显大于周围岩样的孔隙度。再则,当压裂结束后,对裂缝形态的观测只是停留在试件表面,在压裂过程中没有对试件内部的裂缝扩展及延伸情况进行实时的监测。
技术实现思路
为了解决上述问题,本专利技术的目的是提供一种结构简单,使用方便,在实验过程中采用合适的方法来预设径向孔,保证径向孔区域的孔隙度明显大于周围岩样的孔隙度在压裂过程中没有对试件内部的裂缝扩展及延伸情况进行实时的监测的松砂岩径向孔水力压裂物理模拟装置和方法。本专利技术的技术方案是:一种疏松砂岩径向孔水力压裂物理模拟装置,该疏松砂岩径向孔水力压裂物理模拟装置包括泵入装置,中间容器,压裂液管线,模拟井筒,模拟径向孔,压裂试件以及声采集装置;其中,所述泵入装置通过管路与所述中间容器的一端连接,所述中间容器的另一端与所述压裂液管线的一端连接,所述压裂液管线的另一端与所述模拟井筒的竖直管体一端连接,所述模拟井筒的另一端为水平管体,所述模拟径向孔套接所述模拟井筒的水平管体上,所述模拟井筒设置在所述压裂试件的内部,所述声采集装置设置在所述压裂试件的四周,用于采集压裂过程中的声波信号,确定压裂点的位置;所述中间容器中盛有压裂液。进一步,该疏松砂岩径向孔水力压裂物理模拟装置还包括所述用于固定所述压裂试件的钢制立方模具和夹持部件,所述压裂试件设置在所述钢制立方模具内部,所述夹持部件夹持住压裂试件的顶部和底部。进一步,所述压裂试件的内部设有模拟疏松砂岩,所述模拟疏松砂岩包含石英砂、黏土和水泥,其中,粘土包括伊利石粉和蒙脱石粉。进一步,所述声采集装置包括声发射探头、声发射信号放大器以及声发射接收仪;将压裂试件的八个角部都粘结有所述声发射探头,所述声发射探头通过声发射信号放大器连接声发射接收仪。进一步,所述压裂液为胍胶水溶液,所述胍胶水溶液中胍胶质量百分比为0.57%和质量百分比为1.5%的荧光剂。进一步,所述模拟井筒外径为2-4mm,内径为0.5-1.5mm。进一步,所述模拟井筒为不锈钢管,所述模拟径向孔为不锈钢筛网材料。所述不锈钢为304不锈钢。进一步,所述夹持部件为g字夹。本专利技术的利目的是提供上述装置对疏松砂岩径向孔水力压裂物理模拟方法,包括以下步骤:第一步:利用钢制立方模具制作相应的疏松砂岩径向孔水力压裂物理模拟压裂试件,并在压裂试件内部填充模拟疏松砂岩,的原料包含石英砂、黏土和水泥,在制作过程中预先向所述压裂试件置入模拟井筒和模拟径向孔;模拟井筒为不锈钢管,模拟径向孔选用不锈钢筛网材料,卷成圆筒状套在模拟井筒的一端;模拟井筒竖直放入压裂试件中,并且一端伸出压裂试件,模拟井筒伸出压裂试件的一端通过压裂液管线连接中间容器,模拟井筒的另一端与模拟径向孔垂直连接;第二步:将压裂试件的八个角部都粘结有声发射探头,声发射探头通过声发射信号放大器连接声发射接收仪;第三步:用钢制立方模具固定住压裂试件,保证疏松砂岩在压裂过程中保持稳定形态,利用夹持部件,优选为g字夹,夹持住压裂试件的顶部和底部;第四步:配置胍胶水溶液作为压裂液,并向其中添加荧光剂,胍胶水溶液能保证压裂结束后,压裂试件的裂缝中有压裂液残留,以便压裂结束后观察裂缝扩展情况;第五步:把含有荧光剂的压裂液加到中间容器内,用压裂液管线将恒速恒压泵、中间容器与模拟井筒入口端相连;第六步:启动恒速恒压泵,记录下所述入口端压力值的变化,在模拟井筒入口端泵入压裂液的同时,启动声发射接收仪监测压裂过程中的声发射信号,并确定压裂点的位置,当观察到压裂试件表面有压裂液浸出时,停止注入,关闭恒速恒压泵。进一步,该方法还包括第七步:压裂结束后,保存实验数据,取下压裂试件,观察并记录压裂试件表面的裂缝延伸及扩展情况,打开压裂试件通过观察荧光剂的分布来分析裂缝相关特征;优选还包括第八步:通过记录的恒速恒压泵入口端压力值的变化绘制压力曲线。本专利技术有益的效果:1、选用304不锈钢筛网这种材料来模拟径向孔,将其卷成筒状埋设在试件中不仅能使径向孔区域孔隙度明显大于周围岩样的孔隙度,同时保证后续的水力压裂过程中压裂液能经由筛网的孔洞顺畅地进入岩样。该方法可有效模拟出实际地层中径向孔水力压裂过程。2、向压裂液中加入荧光剂,藉由其指示作用,在压裂结束后打开试件可以方便用肉眼直接观察岩样内部与表面裂缝的扩散走向。3、借助声发射接收仪,能准确诊断出试件内部的断裂点位置,有效帮助确定岩样内部裂缝的起裂位置。4、压裂试件由石英砂、黏土(伊利石粉、蒙脱石粉)和水泥混合制成,各组分比例由多次试验结果所得,该重量份比例(石英砂260:蒙脱石粉23:伊利石粉23:水泥26)制得的试件孔隙度和渗透率与实际地层相符,能最大程度上模拟出疏松砂岩储层情况。5、钢制模具将试件箍紧,能模拟提供径向压力,g字夹固定住试件的顶部和底部,能模拟提供轴向压力。附图说明图1是本专利技术一种疏松砂岩径向孔水力压裂物理模拟装置示意图;图2是本专利技术声发射接收仪连接试件示意图。图中,1.恒速恒压泵,2.中间容器,3.压裂液,4.压裂液管线,5.模拟井筒,6.模拟径向孔,7.压裂试件,8.钢制立方模具,9.g字夹,10.声发射探头,11.声发射信号放大器,12.声发射接收仪。具体实施方式下面结合附图对本专利技术的技术方案佐井一步说明。如图1-图2所示,本专利技术一种疏松砂岩径向孔水力压裂物理模拟装置,包括恒速恒压泵1,中间容器2,压裂液3,压裂液管线4,模拟井筒5,模拟径向孔6,压裂试件7,钢制立方模具8,g字夹9,声发射探头10,声发射信号放大器11,声发射接收仪12。压裂试件7的原料包含石英砂、黏土和水泥,用于模拟疏松砂岩,在制作过程中预先向压裂试件7里放置模拟井筒5和模拟径向孔6,其中,粘土包括伊利石粉和蒙脱石粉。压裂试件7中设置有模拟井筒5和模拟径向孔6,模拟井筒5竖直放入压裂试件7中,并且一端伸出压裂试件7,模拟井筒5伸出压裂试件7的一端通过压裂液管线4连接中间容器2,模拟井筒5的另一端与模拟径向孔6垂直连接,中间容器2中盛有压裂液3,泵入装置1与中间容器2连接,用于将中间容器2中的压裂液3泵入模拟井筒5中;压裂试件7用钢制立方模具8固定住,保证压裂试件7在压裂过程中保持稳定形态。g字形夹9持住压裂试件7的顶部和底部。声采集装置包括声发射探头10、声发射信号放大器11以及声发射接收仪12;将压裂试件7的八个角部都粘结有声发射探头10,声发射探头10通过声发射信号放大器11连接声发射接收仪12,用于采集压裂本文档来自技高网...
一种疏松砂岩径向孔水力压裂物理模拟装置和方法

【技术保护点】
一种疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,该疏松砂岩径向孔水力压裂物理模拟装置包括泵入装置(1),中间容器(2),压裂液管线(4),模拟井筒(5),模拟径向孔(6),压裂试件(7)以及声采集装置;其中,所述泵入装置(1)通过管路与所述中间容器(2)的一端连接,所述中间容器(2)的另一端与所述压裂液管线(4)的一端连接,所述压裂液管线(4)的另一端与所述模拟井筒(5)的竖直管体一端连接,所述模拟井筒(5)的另一端为水平管体,所述模拟径向孔(6)套接所述模拟井筒(5)的水平管体上,所述模拟井筒(5)设置在所述压裂试件(7)的内部,所述声采集装置设置在所述压裂试件(7)的四周,用于采集压裂过程中的声波信号,确定压裂点的位置;所述中间容器(2)中盛有压裂液(3)。

【技术特征摘要】
1.一种疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,该疏松砂岩径向孔水力压裂物理模拟装置包括泵入装置(1),中间容器(2),压裂液管线(4),模拟井筒(5),模拟径向孔(6),压裂试件(7)以及声采集装置;其中,所述泵入装置(1)通过管路与所述中间容器(2)的一端连接,所述中间容器(2)的另一端与所述压裂液管线(4)的一端连接,所述压裂液管线(4)的另一端与所述模拟井筒(5)的竖直管体一端连接,所述模拟井筒(5)的另一端为水平管体,所述模拟径向孔(6)套接所述模拟井筒(5)的水平管体上,所述模拟井筒(5)设置在所述压裂试件(7)的内部,所述声采集装置设置在所述压裂试件(7)的四周,用于采集压裂过程中的声波信号,确定压裂点的位置;所述中间容器(2)中盛有压裂液(3)。2.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,该疏松砂岩径向孔水力压裂物理模拟装置还包括所述用于固定所述压裂试件(7)的钢制立方模具(8)和夹持部件(9),所述压裂试件(7)设置在所述钢制立方模具(8)内部,所述夹持部件(9)夹持住压裂试件(7)的顶部和底部。3.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,所述压裂试件(7)的内部设有模拟疏松砂岩,所述模拟疏松砂岩包含石英砂、黏土和水泥,其中,粘土包括伊利石粉和蒙脱石粉。4.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,所述声采集装置包括声发射探头(10)、声发射信号放大器(11)以及声发射接收仪(12);将压裂试件(7)的八个角部都粘结有所述声发射探头(10),所述声发射探头(10)通过声发射信号放大器(12)连接声发射接收仪(12)。5.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,所述压裂液(3)为胍胶水溶液,所述胍胶水溶液中胍胶质量百分比为0.57%和质量百分比为1.5%的荧光剂。6.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,所述模拟井筒(5)外径为2-4mm,内径为0.5-1.5mm。7.根据权利要求1所述的疏松砂岩径向孔水力压裂物理模拟装置,其特征在于,所述模拟井筒(5)为不锈钢管,所述模拟径向孔(...

【专利技术属性】
技术研发人员:张继国冀延民王建王玉芳郝爱刚孔令乐郑明元刘红芬余芳殷昕冉
申请(专利权)人:胜利油田鲁胜石油开发有限责任公司
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1