本实用新型专利技术公开了本实用新型专利技术各实施例的旋翼无人机精准喷药系统,由于主要包括:飞行系统、RTK地面站系统和传感器系统,所述传感器系统将物理传感信息发送至RTK地面站系统,RTK地面站系统结合飞行系统与发送的地图信息和物理传感信息生成飞行路线和喷药方案信息,飞行系统根据生成的飞行路线飞行并根据喷药方案信息进行喷洒;从而可以克服现有技术中田间作业有效风场的利用不足,无人机工作效率低,人工配药存在着很多弊端,忽略了作业时刻的很多关键性因素例如风力大小,温度,湿度等的缺陷。
【技术实现步骤摘要】
旋翼无人机精准喷药系统
本技术涉及喷药无人机的研发和应用
,具体地,涉及旋翼无人机精准喷药系统。
技术介绍
近几年来,全国各地都在积极开展喷药无人机的研发和应用,喷药无人机的出现的确改变了我国的农药防治现状,如今国内的喷药无人机在由于其卓越的性能,受到了各级政府及企业的一直看好,所研发的机型也逐渐丰富、应用范围变广、推广速度加快、技术研究越来越深入。精确农业,智慧农业的倡导对我们的科研技术人员提出了更高的要求。无人机实现农作物喷洒化控剂的主要目的是为了根据作物的需求来喷洒化控剂以及控制其长势和调控生理变化而达到预期高产的目的。由于存在田块中施肥不均匀、作物长势参差不齐、水分灌溉差异、虫灾情况成块分布等实际问题。一种依据作物实际生长以及土壤肥力情况划定航空区域解决药剂浪费、实现农情监测的无人机喷药系统成为一种发展趋势。另外针对旋翼无人机有效风场的利用,也是提高无人机工作效率的重要途径。本技术涉及的是一种将无人机航空监测和无人机喷药高效结合的无人机精确植保系统。通过在带有RTK技术的无人机上搭载高光谱或者多光谱相机,规划航线在指定区域上方进行拍照,通过软件处理得到该区域的作物长势分布图,再结合谷歌地图对喷药无人机(带RTK技术)飞行航线进行规划达到“对症下药”的效果。另外通过对喷药模块改进,使飞机风场得到高效利用并且同时满足对作物不同垄间喷药的需求。“一种植保无人机”(申请号:201510150806.3申请口:2015-04-01)摘要:摘要:本技术公开了植保无人机的喷药方法,具体方案是:S1、划定一个矩形作业区域;S2,沿其中一个矩形区域的周边呈螺旋状回转飞行,相邻飞行轨迹的间隔为喷洒半径;S3、飞机主体飞行至该矩形区域的中部后停止喷洒药液或往与该矩形区域最接近的另一矩形区域的侧边直线飞行。本技术能减少飞机主体转弯,降低损耗。通过对以上检索并对上述列出的专利文献检索后不难发现,尽管之前已经存在无人机植保的相关专利,但是,其不管是从设计理念还是技术效果方面来讲,存在着本质的差别,有很多不完善和需要提高的地方。(1)田间作业有效风场的利用不足。现有的旋翼无人机已经存在很多种类,例如四旋翼,八旋翼,十六旋翼等,但是对于植保无人机,对不同飞机有效风场的高效利用尤为重要,另外针对不同作物垄间大小,进行针对性的调节满足生产需要,这是现有很多植保无人机忽略的地方。(2)目前应用在植保无人机还存在着手持遥控的弊端。手持遥控完全由飞手的经验对飞行速度,飞行高度的把握,如果存在强风,对飞手操作要求很高,这不符合精准农业的要求和植保无人机的推广。甚至在演示过程中都出现过时空和坠落的情况,在实际喷洒农药过程中还会出此案重复喷施和遗漏作业的问题。(3)在实际作业中,没有能够将作物生长长势监测和实际农田作业情况结合,存在严重“浪费药剂”现象。在实际作业中很多无人机遵照设定的航线完成喷洒任务,没有针对性,另外由于无人机存在续航时间和载荷限制,没有针对性的喷洒,使得作业达不到预期工效,影响作业进度。(4)现有很多无人机配药都依靠人工经验。人工配药存在着很多弊端,忽略了作业时刻的很多关键性因素例如风力大小,温度,湿度等。这直接影响着飞机作业的飞行速度,飞行高度以及飞机喷幅。现有的很多将这两大块完全脱节或者结合不强,没有一个完善整合的系统,这不符合精准农业的要求。
技术实现思路
本技术的目的在于,针对上述问题,提出旋翼无人机精准喷药系统,以实现依据作物实际生长以及土壤肥力情况划定航空区域解决药剂浪费、实现农情监测,提高无人机工作效率的优点。为实现上述目的,本技术采用的技术方案是:旋翼无人机精准喷药系统,主要包括:飞行系统、RTK地面站系统和传感器系统,所述传感器系统将物理传感信息发送至RTK地面站系统,RTK地面站系统结合飞行系统与发送的地图信息和物理传感信息生成飞行路线和喷药方案信息,飞行系统根据生成的飞行路线飞行并根据喷药方案信息进行喷洒。进一步地,所述传感器系统包括风力传感器、温度传感器和湿度传感器分别采集检测风力、温度和湿度的大小数值。进一步地,所述飞行系统包括旋翼无人机,所述旋翼无人机包括电路部分,具体包括图像处理模块,对作业地块的光谱信息图进行处理,得到作物长势分布图片;光谱图像分析模块,对图片进行波段分析并结合人工勘察结果建立数据库,判定作物生长所需,划定需要进行作业的矩形区域;地图呈现模块,读取矩形区域顶点的坐标信息结合地图信息,将作业区域呈现在地图上,得到作业地图信息,将地图信息发送至RTK地面站;和控制模块,对旋翼无人机各模块之间的工作进行协调处理。进一步地,所述旋翼无人机具体还包括机载药箱,液位计、分流器和抽水泵,所述液位计设置在机载药箱内部,测量机载药箱的药液面,所述抽水泵固定设置在机载药箱外侧,抽水泵将药剂抽出后通过分流器进行分流;所述分流器通过支架固定设置在机载药箱的底部,还包括T字型支架,所述T字型支架具体包括第一长条形轻质板和垂直于第一长条形轻质板的第二长条轻质板,所述第一长条形轻质木板和第二长条形轻质板在垂直交点部分通过螺丝固定,所述长条形轻质板上均分别设置有多个孔洞,在第一长条形轻质板上位于垂直交点两侧的任一孔洞分别与分流器上的软管贯穿连接,在第二长条形轻质板上位于垂直交点一侧的任一孔洞与分流器上的软管贯穿连接,所述T型支架还包括设置在长条轻质板孔洞上的带孔螺丝,将贯穿孔洞的软管通过带孔螺丝与喷头连接,通过旋拧带孔螺丝对应的螺母对软管进行固定进一步地,所述喷头为液压喷头或离心喷头。本技术各实施例的旋翼无人机精准喷药系统,由于主要包括:飞行系统、RTK地面站系统和传感器系统,所述传感器系统将物理传感信息发送至RTK地面站系统,RTK地面站系统结合飞行系统与发送的地图信息和物理传感信息生成飞行路线和喷药方案信息,飞行系统根据生成的飞行路线飞行并根据喷药方案信息进行喷洒;从而可以克服现有技术中田间作业有效风场的利用不足,无人机工作效率低,人工配药存在着很多弊端,忽略了作业时刻的很多关键性因素例如风力大小,温度,湿度等的缺陷。本技术的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本技术而了解。下面通过附图和实施例,对本技术的技术方案做进一步的详细描述。附图说明附图用来提供对本技术的进一步理解,并且构成说明书的一部分,与本技术的实施例一起用于解释本技术,并不构成对本技术的限制。在附图中:图1为本技术实施例所述的旋翼无人机的结构图及局部结构图;图2为本技术实施例所述的旋翼无人机基于RTK技术精准施药逻辑图;图3a为本技术实施例所述的旋翼飞机飞行方向风场分布图;图3b为本技术实施例所述的旋翼飞机平面上垂直于飞行方向风场分布图;图4a为本技术实施例所述的作物长势分布图获取的坐标图;图4b为本技术实施例所述的谷歌地图圈定作业区域图;图4c为本技术实施例所述的划定飞行计划航线图。结合附图,本技术实施例中附图标记如下:1-机载药箱;2-可调量水泵;3-飞行控制器;4-分流器;5-“T”字形支架;6-旋翼飞机;7-喷头(离心或者液压);8-带洞均匀夹板;9-固定螺丝;10-液位计本文档来自技高网...
【技术保护点】
旋翼无人机精准喷药系统,其特征在于,包括飞行系统、RTK地面站系统和传感器系统,所述传感器系统将物理传感信息发送至RTK地面站系统,RTK地面站系统结合飞行系统与发送的地图信息和物理传感信息生成飞行路线和喷药方案信息,飞行系统根据生成的飞行路线飞行并根据喷药方案信息进行喷洒。
【技术特征摘要】
1.旋翼无人机精准喷药系统,其特征在于,包括飞行系统、RTK地面站系统和传感器系统,所述传感器系统将物理传感信息发送至RTK地面站系统,RTK地面站系统结合飞行系统与发送的地图信息和物理传感信息生成飞行路线和喷药方案信息,飞行系统根据生成的飞行路线飞行并根据喷药方案信息进行喷洒。2.根据权利要求1所述的旋翼无人机精准喷药系统,其特征在于,所述传感器系统包括风力传感器、温度传感器和湿度传感器分别采集检测风力、温度和湿度的大小数值。3.根据权利要求2所述的旋翼无人机精准喷药系统,其特征在于,所述飞行系统包括旋翼无人机,所述旋翼无人机包括电路部分,具体包括图像处理模块,对作业地块的光谱信息图进行处理,得到作物长势分布图片;光谱图像分析模块,对图片进行波段分析并结合人工勘察结果建立数据库,判定作物生长所需,划定需要进行作业的矩形区域;地图呈现模块,读取矩形区域顶点的坐标信息结合地图信息,将作业区域呈现在地图上,得到作业地图信息,将地图信息发送至RTK地面站;和控制模块,对旋翼无人机各模...
【专利技术属性】
技术研发人员:祁亚琴,吴俊杭,张立福,吕新,曾窕俊,王飞,张泽,田敏,江岩,胡浩伟,
申请(专利权)人:石河子大学,
类型:新型
国别省市:新疆,65
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。