当前位置: 首页 > 专利查询>重庆大学专利>正文

一种大型风机运行趋势分析及故障预测方法技术

技术编号:16299950 阅读:54 留言:0更新日期:2017-09-26 17:55
本发明专利技术提供一种大型风机运行趋势分析及故障预测方法,属于故障诊断领域。该方法针对故障初期故障表征不明显导致的早期故障不易判别,提出一种大型风机运行趋势分析及故障预测方法,该方法包括以下步骤:步骤一:选取振动信号和电参量的相关时域特征组成状态特征差值矩阵,以此描述相邻时间序列的状态。步骤二:将差值矩阵的奇异值组成特征向量作为SVM的输入向量,对正常和异常趋势进行分类分析。步骤三:提取特征频率下的幅值组成特征矩阵,建立不同故障类型的HMMs模型库,计算最大似然对数值找出引发异常趋势的最大可能性故障,实现故障预测。该方法对保障风机稳定运行,提高维护与维修效率,保障人员设备安全具有重要作用。

Trend analysis and fault prediction method of large fan

The invention provides a method for analyzing the operation trend of a large fan and a fault prediction method, belonging to the field of fault diagnosis. The method for early fault fault characterization is not obvious due to the early fault is not easy to determine, a method is proposed to predict the trend analysis of the large wind turbine operation and fault, the method comprises the following steps: correlation feature selection of vibration signal and the electrical parameters of the component state feature difference matrix to describe the adjacent time series state. Step two: the singular value of the difference matrix is used as the input vector of the SVM, and the normal and abnormal trends are classified and analyzed. Step three: extraction of amplitude characteristic frequency component characteristic matrix, establish HMMs model library of different fault types, calculation of the maximum likelihood of finding maximum likelihood numerical faults caused by abnormal trend, realize fault prediction. This method plays an important role in ensuring the stable operation of fan, improving the efficiency of maintenance and maintenance, and ensuring the safety of personnel and equipment.

【技术实现步骤摘要】
一种大型风机运行趋势分析及故障预测方法
本专利技术属于故障诊断领域,具体地说是一种大型风机运行趋势分析及故障预测方法。
技术介绍
大型风机是一种将机械能转化为输送气体压力能和动能的大型回转设备。它在采矿、冶金、化工等行业中应用广泛且具有重要作用,风机运行的可靠性和连续性将直接影响工业生产的可靠性和安全性。但在实际生产中,由于设备运行环境的恶劣、设备老化和安装不当等因素的影响,风机发生故障的情况时有发生。此外,严重的停机故障的发生大多是由异常趋势随着时间积累不断劣化,倘若能在故障早期分析识别出异常运行趋势,可大大减少严重故障的发生。经典诊断技术大多将研究的重点放在诊断环节,缺乏对设备运行过程中的状态趋势分析及故障预测的研究。风机异常趋势状态运行时往往是故障发生的早期,由于故障特征表现的不明显,检修可能并不会立即执行;而当异常运行状态发展为严重故障后,往往又是“事后维修”,这样不仅给企业造成了巨大的经济损失,同时给从业人员带来严重的安全隐患,因此对大型风机的运行状态趋势进行分析并对其故障进行预测、减少“事后维修”就显得尤为重要。相较于其他大型旋转机械设备,大型风机故障机理与振动信号特性与其他旋转机械不尽相同,应用于旋转机械的成熟技术可能并不一定适用,加之存在对风机重要性认识不足等问题,极大地限制和阻碍了对风机运行状态趋势预测与故障诊断技术的研究及实施。对于大型风机的运行状态趋势分析及故障预测,其中很重要的问题是选择监测的参数。设备在运行过程中以振动现象最为普遍和明显,机械设备只要运转则会产生振动,风机的振动现象包含了丰富的故障信息。然而,随着风机的发展,风机各状态参量之间的联系越来越紧密,设备在异常趋势情况下往往伴随着多个特征量的变化,只依靠单一状态量的异常越来越难准确的判断设备的运行趋势,甚至还有可能造成误判或错判。其次,风机振动监测部分主要集中在传动系统(包括主轴、齿轮箱等部件),这些振动信号的测量获取需要高精度的传感器,并且大多数采用的是嵌入式的测量方法,获取代价较高或不易获取。再者,大型风机的工作环境较为恶劣,其实际的生产工况复杂,包括强负载、原材料腐蚀性和设备自身及周围的强辐射等,加大了单一变量进行趋势分析及故障预测的难度。并且,在实际的生产现场,大型风机都有设置有严格的检修计划,且实时监测的数据量大,关于振动参量的精密检测设备不可能随时在线,在早期萌发阶段,振动参量反应故障的趋势需要时间的积累,故障数据极有可能淹没在众多正常数据当中。相较于振动参量,电参量信号获取方便、精度较高、抗干扰能力强,当风机出现振动加剧时,电机侧负荷电流会出现升高等特征,也就是说电参量也包含了风机大量运行状态的信息。因此,为了弥补单一参量进行趋势分析及故障预测带来的不足,考虑引入以振动参量为主导,辅以电参量的多元信息融合的数据驱动方法进行趋势分析和故障预测。
技术实现思路
有鉴于此,本专利技术目的在于一种大型风机运行趋势分析及故障预测方法,该方法针对故障初期故障表征不明显导致的早期故障不易判别,以及由分析过程复杂、数据处理量大所导致的在线智能故障诊断效率低、实时性差等问题。通过引入以振动参量为主导,辅以电参量的多元信息融合的数据驱动方法,建立描述风机运行状态的模型用于趋势分析。在分析结果为异常的基础上,预测引发该异常趋势的最大可能性故障。从而实现对故障初期时的诊断与预测,提高维护与维修效率,保障人员、设备和工作环境的安全。为达到上述目的,本专利技术提供如下技术方案:步骤一:建立大型风机运行状态模型1)将Ti时刻采集到的振动-电参量组成向量ki,则ki可以表示为ki=[υ1,υ2,…,υ8]。其中[υ1,υ2,…,υ8]表示振动参量的时域特征和电参量的时域特征组成的特征向量,选取υ1,υ2,…,υ8为振动参量的均值、峰值、峭度、均方根值和功率的极差、均方根、标准差、峭度。2)对ki进行行向量的扩展,组成一个由以上参数构成的状态特征矩阵V,V=[k1,k2,…,km]T。将时域振动参量与电参量代入V,则V等价表示为:3)考虑到单独的特征矩阵不能反映设备连续运行状态趋势,将时间序列上的采样数据进行分段处理,得到连续的特征状态矩阵V,记这些连续的序列为Vj,也就是将Vj可以表示为Vj=[V1,V2,…,Vn],根据大型风机的转速以及传感器采集频率,同时为了在预测环节进行FFT变换后更方便的分析频谱信息,在一连续时间段内采集1024个点,由此确定Vj=[V1,V2,…,V4]。并连续采集8次,则j=8。4)将连续时间序列上相邻两个状态作差,这样就可以将相邻状态联系起来,得到反映设备在运行过程中相邻状态振动信号-电参量最直接的变化关系,记为ΔV=Vj-Vj-1,至此建立了描述大型风机运行状态的特征模型。步骤二:大型风机运行趋势的分析1)提取该特征差值矩阵ΔV的特征值组成状态特征向量λ=[λ1,λ2,…λα],并求取特征值向量的范数||λ||,以此来表征各个差值特征矩阵的特征;2)根据步骤一中对采样点及采样次数的确定,将该时间序列上的差值特征矩阵的特征值模向量组成新的特征向量η,η=[||λ1||,||λ2||…,||λ7||],将η作为支持向量机的输入特征向量,建立基于SVM的大型风机运行趋势分析模型。3)根据SVM的训练过程中,SVM选取核函数为径向基函数参数,并选用GA算法进行自动的寻优,保证分类正确率保持在95%以上,由此可得到最优参数σ及惩罚因子C。其中σ为核参数σ,寻求最优参数σ可改善SVM对故障的识别性能,惩罚因子C表示对错误样本的惩罚程度。4)通过对风机运行正常和异常趋势的分类输出,实现对大型风机运行趋势的分析。步骤三:大型风机故障预测针对运行状态趋势分析为异常的情况,进一步采用基于复信号双边谱与隐半马尔科夫模型相结合的故障预测方法。1)复信号双边谱是将同一截面上相互垂直的两个通道的振动信号构造为一个复信号,对该复信号进行一次FFT变换,一次信号预处理、一次谱校正,无需对x、y方向信号分别进行分析,直接得到双边谱,变换过后所得双边谱的幅值谱及相位谱中频率存在正负之分且不对称。2)利用复信号双边谱分析方法提取信号在正负特征频率下的幅值-3f,-2,-f,-1/2f,1/2f,f,-2f,3f,并将其组成故障特征矩阵。为了便于数据的处理并减少数据之间的相互影响,将所采集和选取的特征值进行矢量归一化的处理,使得所有的特征值都在[0,1]范围内。3)每一个HMM对应大型风机的一种故障类型的一种时序过程,HMM的初始条件按照左右型的条件进行约束和设置,其状态转移概率矩阵采用的是等概率的方法进行初始化,而状态转移概率矩阵求解的自动寻优可由前向-后向算法解决。不同故障类型的复信号双边谱正负特征频率下的振幅组成的特征矩阵即为观测状态矩阵,并将其作为训练HMM的输入。4)对于HMM训练的参数估计问题,由Baum-Welch算法利用递归的思想解决,以此寻求HMM最优的模型参数,HMM中的各参量组成了数乘法中的变量,通过对目标函数的极值进行推导,建立新旧模型参数之间的关系,从而达到各参数的重估。迭代过程寻求新旧参量之间的关系,当模型的参数不再发生明显变化时,可以认为迭代可以停止,此时得到的HMM的模型参数即为最优参数。以此构建大型风机的HM本文档来自技高网
...
一种大型风机运行趋势分析及故障预测方法

【技术保护点】
一种大型风机运行趋势分析及故障预测方法,其特征在于基于振动信号‑电参量的大型风机运行趋势分析,具体包括以下步骤:步骤一:建立大型风机运行状态模型步骤二:大型风机运行趋势的分析。

【技术特征摘要】
1.一种大型风机运行趋势分析及故障预测方法,其特征在于基于振动信号-电参量的大型风机运行趋势分析,具体包括以下步骤:步骤一:建立大型风机运行状态模型步骤二:大型风机运行趋势的分析。2.权利要求1所述的基于振动信号-电参量的运行趋势分析,其特征在于:所述运行趋势是指大型风机运行正常或者运行异常,风机异常趋势是设备早期故障的一种体现,随着异常趋势的积累,最终转化为严重故障。3.权利要求1所述的步骤一特征在于:所述建立大型风机运行状态模型的过程如下:将Ti时刻采集到的振动-电参量组成向量ki,则ki可以表示为ki=[υ1,υ2,…,υ8]。其中[υ1,υ2,…,υ8]表示振动参量的时域特征和电参量的时域特征组成的特征向量,选取υ1,υ2,…,υ8为振动参量的均值、峰值、峭度、均方根值和功率的极差、均方根、标准差、峭度。然后对ki进行行向量的扩展,组成一个由以上参数构成的状态特征矩阵V,V=[k1,k2,…,km]T。将时域振动参量与电参量代入V,则V等价表示为:考虑到...

【专利技术属性】
技术研发人员:谷振宇朱雪莲胡韶华吕健成金迪文
申请(专利权)人:重庆大学
类型:发明
国别省市:重庆,50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1