一种测量甲烷透过率的装置制造方法及图纸

技术编号:16214863 阅读:21 留言:0更新日期:2017-09-15 20:54
本发明专利技术涉及气体透过率测试领域,一种测量甲烷透过率的装置,包括氦气微漏装置、储气罐、气压计、阀I、阀II、闸板阀、传样腔、传样杆、气动阀、高压区域、样品、样品架、测试区域、质谱、测试腔、真空泵及气管,高压区域、样品、样品架、测试区域均位于测试腔内,所述氦气微漏装置在一定温度下氦气的漏率是可控的,并已经过校准,所述高压区域和所述测试区域内均安装有残余气体分析仪,用于测量气体分压;所述闸板阀内部具有多块挡板,不同挡板上各具有一个不同尺寸的孔,能够在不破坏真空环境的条件下,用所述不同的挡板阻挡装置中气路,以改变气路的横截面积,使得对于不同的气体,在不同的气压条件下气流都能达到稳定,提高测量精度。

Device for measuring methane transmission rate

The present invention relates to a gas permeability test field, a method of measuring the methane transmittance of the device, including helium micro leakage device, gas tank, pressure gauge, valve valve, gate valve, I II, sample cavity, sample transferring rod, pneumatic valve, high pressure, sample, sample holder, test area and mass spectrometry test chamber, vacuum pump and pipe, high-pressure area, sample, sample rack, test area are located in the test chamber, micro leakage device of the helium at a certain temperature helium leak rate is controllable, and has been calibrated, the high pressure region and the test residual gas analyzer were installed within the region, for the measurement of gas pressure; the gate valve with internal baffles, different baffle plates each having a different size hole, can not damage the vacuum environment under the condition of baffle for the different gas path blocking device, In order to change the cross section area of the gas path, the airflow can be stabilized for different gases and under different pressure conditions, and the measurement accuracy can be improved.

【技术实现步骤摘要】
一种测量甲烷透过率的装置
本专利技术涉及气体透过率测试领域,特别是一种能够提高测量精度、能够校准不同气体的一种测量甲烷透过率的装置。
技术介绍
测量气体透过率(transmissionrate)的现有方法中,如使用质谱测量气体透过率的方法,现有技术中通常使用的是质量流量计来测量通入气体的量,精确度较低,在对于某些气体透过率非常低的样品的情况,比如甲烷气体在某些工业用有机保护膜的透过情况,测试通常需要较长时间,因此会造成较大误差,另外,由于甲烷分子的动态体积通常不同于化学性质较为稳定的氦气、氮气等气体,这导致了质量流量计的测量有更大误差,导致数据精度下降,所述一种测量甲烷透过率的装置能解决问题。
技术实现思路
为了解决上述问题,本专利技术使用经过校准的氦气微漏装置来校准气体透过率,提高了测量精度,并具有特殊设计的闸板阀,能够校准不同的气体。本专利技术所采用的技术方案是:所述一种测量甲烷透过率的装置主要包括氦气微漏装置、储气罐、气压计、阀I、阀II、闸板阀、传样腔、传样杆、气动阀、高压区域、样品、样品架、测试区域、质谱、测试腔、真空泵及气管,所述高压区域、样品、样品架、测试区域均位于所述测试腔内,所述样品架安装到测试腔时能够将所述测试腔隔开为所述高压区域和所述测试区域,所述样品架中心具有贯穿的开口,当样品架安装到测试腔时,所述开口为所述高压区域和所述测试区域之间唯一的气路,所述测试区域外端安装有所述质谱,所述质谱入口在所述测试区域内,所述样品用真空胶粘于所述样品架上位于所述高压区域的一面、且完全覆盖所述样品架中心的开口,所述传样腔通过所述气动阀连接所述测试腔,所述传样腔具有所述传样杆、且能够将所述样品架在所述传样腔和测试腔之间传输,所述测试腔连接有所述真空泵;所述储气罐中储存有甲烷气体,所述氦气微漏装置和储气罐出口处均具有阀门,所述氦气微漏装置和储气罐通过气管相连、且该段气管相连处具有所述气压计,然后经气管分别连接气路I和气路II,再气管连接于所述测试腔的所述高压区域,所述气路I上依次连有所述阀II、闸板阀,所述气路II上具有所述阀I,所述氦气微漏装置在一定温度下氦气的漏率是可控的,并已经过校准,所述高压区域和所述测试区域内均安装有残余气体分析仪,用于测量气体分压;所述闸板阀内部具有多块挡板,不同挡板上各具有一个不同尺寸的孔,能够在不破坏真空环境的条件下,用所述不同的挡板阻挡装置中气路,以改变气路的横截面积,使得对于不同的气体,在不同的气压条件下气流都能达到稳定,提高测量精度。所述闸板阀内部挡板上的孔的直径30微米至150微米,所述质谱入口到样品的距离为20毫米至50毫米;所述质谱入口为毛细管形状、且长度5毫米至30毫米,内径0.3毫米至1毫米;所述样品架中心的开口形状是直径1毫米至5毫米的圆形、也可以是边长1毫米至3毫米的正方形;所述样品的厚度为200微米至2毫米;所述样品架与测试腔的密封结构是橡胶圈密封、也可以是铜圈密封。利用所述一种测量甲烷透过率的装置进行测量的方法步骤为:一.开启所述气动阀,用所述传样杆将所述样品架取至所述传样腔,开启所述阀I和阀II,开启所述真空泵对装置抽真空;二.关闭所述气动阀,关闭所述阀I,打开所述氦气微漏装置,使氦气以恒定的漏率经过所述闸板阀后进入所述测试腔,开启所述质谱,开始校准过程;三.待系统稳定后,得到真空度与氦气漏率之间的关系曲线、以及氦气分压与氦气漏率之间的关系曲线;四.测量所述高压区域的氦气分压和所述测试区域的氦气分压,并由上述已知的一定漏率条件下氦气分压,来估计泻流,并记录所述质谱的离子电流,得到质谱的离子电流与泻流的关系曲线;五.计算氦原子在单位时间内与单位面积表面的碰撞率即单位时间单位面积上的碰撞数,其中,p是气压,m是分子质量,k是玻尔兹曼常数,T是温度,所述闸板阀挡板开孔面积由步骤四中得到的泻流比上碰撞率而得;六.测试过程,关闭所述氦气微漏装置,关闭所述阀II,用所述传样杆将所述样品架取至所述测试腔,并将所述测试腔隔开为所述高压区域和所述测试区域,开启所述储气罐,开启所述阀I,对甲烷进行透过率测试,将所述质谱得到的离子电流与上述步骤四得到的氦气的校准数据对比,并对测量得到的所述高压区域和测试区域的甲烷的分压进行校准;七.计算甲烷在样品处从所述高压区域到所述测试区域的漏率其中A为步骤五中所得所述闸板阀挡板开孔面积、P1和P2分别为步骤六中得到的校准后的所述高压区域和测试区域的甲烷的分压、d为所述样品厚度、Q为甲烷在样品材料中的渗透系数;八.步骤七中得到的甲烷在样品处的漏率乘以测试区域的甲烷的分压,即得到甲烷在所述样品中的透过率。本专利技术的有益效果是:根据不同气体分子在不同的气压条件下的平均自由程不同,且真空泵对不同气体分子的抽速不同,因此本专利技术特殊设计的闸板阀能提供不同的气路的横截面积,使得对于不同的气体,在不同的气压条件下气流都能达到稳定;本专利技术使用经过校准的氦气微漏装置来校准气体透过率,提高了测量精度,且校准和测量能一次性完成,另外,具有特殊设计的闸板阀,在不用打开装置的真空系统的情况下就能够校准不同的气体。附图说明下面结合本专利技术的图形进一步说明:图1是本专利技术示意图。图中,1.氦气微漏装置,2.储气罐,3.气压计,4.阀I,5.阀II,6.闸板阀,7.传样腔,8.传样杆,9.气动阀,10.高压区域,11.样品,12.样品架,13.测试区域,14.质谱,15.测试腔,16.真空泵。具体实施方式如图1是本专利技术示意图,主要包括氦气微漏装置1、储气罐2、气压计3、阀I4、阀II5、闸板阀6、传样腔7、传样杆8、气动阀9、高压区域10、样品11、样品架12、测试区域13、质谱14、测试腔15、真空泵16及气管,所述高压区域10、样品11、样品架12、测试区域13均位于所述测试腔15内,所述样品架12安装到测试腔15时能够将所述测试腔15隔开为所述高压区域10和所述测试区域13,所述样品架12中心具有贯穿的开口,当样品架12安装到测试腔15时,所述开口为所述高压区域10和所述测试区域13之间唯一的气路,所述测试区域13外端安装有所述质谱14,所述质谱14入口在所述测试区域13内,所述样品11用真空胶粘于所述样品架12上位于所述高压区域10的一面、且完全覆盖所述样品架12中心的开口,所述传样腔7通过所述气动阀9连接所述测试腔15,所述传样腔7具有所述传样杆8、且能够将所述样品架12在所述传样腔7和测试腔15之间传输,所述测试腔15连接有所述真空泵16;所述储气罐2中储存有甲烷气体,所述氦气微漏装置1和储气罐2出口处均具有阀门,所述氦气微漏装置1和储气罐2通过气管相连、且该段气管相连处具有所述气压计3,然后经气管分别连接气路I和气路II,再气管连接于所述测试腔15的所述高压区域10,所述气路I上依次连有所述阀II5、闸板阀6,所述气路II上具有所述阀I4。所述氦气微漏装置1在一定温度下氦气的漏率是可控的,并已经过校准,所述高压区域10和所述测试区域13内均安装有残余气体分析仪,用于测量气体分压;所述闸板阀6内部具有多块挡板,不同挡板上各具有一个不同尺寸的孔,能够在不破坏真空环境的条件下,用所述不同的挡板阻挡装置中气路,以改变气路的横截面积,使得对于不同的气体,在不同的气本文档来自技高网...
一种测量甲烷透过率的装置

【技术保护点】
一种测量甲烷透过率的装置,主要包括氦气微漏装置(1)、储气罐(2)、气压计(3)、阀I(4)、阀II(5)、闸板阀(6)、传样腔(7)、传样杆(8)、气动阀(9)、高压区域(10)、样品(11)、样品架(12)、测试区域(13)、质谱(14)、测试腔(15)、真空泵(16)及气管,所述高压区域(10)、样品(11)、样品架(12)、测试区域(13)均位于所述测试腔(15)内,所述样品架(12)安装到测试腔(15)时能够将所述测试腔(15)隔开为所述高压区域(10)和所述测试区域(13),所述样品架(12)中心具有贯穿的开口,当样品架(12)安装到测试腔(15)时,所述开口为所述高压区域(10)和所述测试区域(13)之间唯一的气路,所述测试区域(13)外端安装有所述质谱(14),所述质谱(14)入口在所述测试区域(13)内,所述样品(11)用真空胶粘于所述样品架(12)上位于所述高压区域(10)的一面、且完全覆盖所述样品架(12)中心的开口,所述传样腔(7)通过所述气动阀(9)连接所述测试腔(15),所述传样腔(7)具有所述传样杆(8)、且能够将所述样品架(12)在所述传样腔(7)和测试腔(15)之间传输,所述测试腔(15)连接有所述真空泵(16);所述储气罐(2)中储存有甲烷气体,所述氦气微漏装置(1)和储气罐(2)出口处均具有阀门,所述氦气微漏装置(1)和储气罐(2)通过气管相连、且该段气管相连处具有所述气压计(3),然后经气管分别连接气路I和气路II,再气管连接于所述测试腔(15)的所述高压区域(10),所述气路I上依次连有所述阀II(5)、闸板阀(6),所述气路II上具有所述阀I(4),其特征是:所述氦气微漏装置(1)在一定温度下氦气的漏率是可控的,并已经过校准,所述高压区域(10)和所述测试区域(13)内均安装有残余气体分析仪,用于测量气体分压;所述闸板阀(6)内部具有多块挡板,不同挡板上各具有一个不同尺寸的孔,能够在不破坏真空环境的条件下,用所述不同的挡板阻挡装置中气路,以改变气路的横截面积,使得对于不同的气体,在不同的气压条件下气流都能达到稳定,提高测量精度。...

【技术特征摘要】
1.一种测量甲烷透过率的装置,主要包括氦气微漏装置(1)、储气罐(2)、气压计(3)、阀I(4)、阀II(5)、闸板阀(6)、传样腔(7)、传样杆(8)、气动阀(9)、高压区域(10)、样品(11)、样品架(12)、测试区域(13)、质谱(14)、测试腔(15)、真空泵(16)及气管,所述高压区域(10)、样品(11)、样品架(12)、测试区域(13)均位于所述测试腔(15)内,所述样品架(12)安装到测试腔(15)时能够将所述测试腔(15)隔开为所述高压区域(10)和所述测试区域(13),所述样品架(12)中心具有贯穿的开口,当样品架(12)安装到测试腔(15)时,所述开口为所述高压区域(10)和所述测试区域(13)之间唯一的气路,所述测试区域(13)外端安装有所述质谱(14),所述质谱(14)入口在所述测试区域(13)内,所述样品(11)用真空胶粘于所述样品架(12)上位于所述高压区域(10)的一面、且完全覆盖所述样品架(12)中心的开口,所述传样腔(7)通过所述气动阀(9)连接所述测试腔(15),所述传样腔(7)具有所述传样杆(8)、且能够将所述样品架(12)在所述传样腔(7)和测试腔(15)之间传输,所述测试腔(15)连接有所述真空泵(16);所述储气罐(2)中储存有甲烷气体,所述氦气微漏装置(1)和储气罐(2)出口处均具有阀门,所述氦气微漏装置(1)和储气罐(2)通过气管相连、且该段气管相连处具有所述气压计(3),然后经气管分别连接气路I和气路II,再气管连接于所述测试腔(15)的所述高压区域(10),所述气路I上依次连有所述阀II(5)、闸板阀(6)...

【专利技术属性】
技术研发人员:陈兴威张向平赵永建
申请(专利权)人:金华职业技术学院
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1