本发明专利技术公开了一种用超声辅助来制备聚合物纳米/微米球的方法,它是在聚合物加入分散剂超声,聚合物即以纳米或微米球的形式分散在分散剂中,除尽分散剂即得分散度小于1、粒径分布在100-5000纳米的载药纳米/微米球。该方法可适用于制备以多种聚合物为载体的多种药物控制释放系统,可在室温下实施,对药物的热稳定性没有特殊要求,且具有操作简便、容易实施的优点,在生物医用领域具有广泛的应用价值。
【技术实现步骤摘要】
本专利技术涉及一种利用超声辅助手段来制备聚合物纳米、微米球的方法,属于高分子材料领域。
技术介绍
迄今为止,用于药物控制释放的纳米、微米粒子材料主要是聚合物,按合成方法可分为天然高分子材料和合成高分子材料;按降解性能分为可生物降解高分子材料和非生物降解高分子材料。纳米技术的迅速发展使得药物剂型的研究进入一个新阶段,目前在所有聚合物药物控制释放系统的研究中,纳米、微米粒子药物控制释放系统占了很大比例。目前,纳米/微米球的常用制备方法有透析、乳化聚合、乳化溶剂挥发、喷雾干燥和熔融等方法。在这几种方法中,透析法通常只适用于两亲性聚合物,不适用于憎水性聚合物。而熔融法制得的微球粒径范围窄,但需温度较高,只适用于热稳定性高的药物。
技术实现思路
本专利技术的目的是为了克服现有的透析、乳化聚合、乳化溶剂挥发、喷雾干燥和熔融等方法在制备纳米/微米球时存在的缺陷,提供一种超声辅助制备聚合物纳米/微米球的新方法,该方法可在室温实施,且操作简单。本专利技术提供的技术方案是在聚合物中加入分散剂后进行超声处理,聚合物即以纳米或微米球的形式分散在分散剂中,除尽分散剂即得分散度均匀、粒径分布在100-5000纳米的纳米或微米球。其具体制备步骤如下在分子量为1000-500000的聚合物中加入与聚合物质量比为1000∶1-1∶1的分散剂,再将得到的混合物于0℃-40℃和常压下,用功率为50-500W的超声波进行超声处理,最后除尽分散剂即得粒径分布在100-5000纳米、分散度小于1的纳米或微米球。上述方法中所用的聚合物包括聚乙交酯(PGA)、聚丙交酯(PLA)、聚己内酯(PCL)、聚2,2-二甲基三亚甲基碳酸酯(PDTC)、聚三亚甲基碳酸酯(PTMC)、聚5-苄氧基-三亚甲基碳酸酯(PBTMC),以及它们的混合物、它们的共聚物、它们的胆固醇功能化的聚合物、它们的胆酸功能化的聚合物和/或它们的树型高分子PAMAM-OH功能化的聚合物,聚合物分子量在1000-500000之间。所用的分散剂包括水、甲醇、乙醇、乙醚、正己烷、石油醚、丙酮、二氯甲烷、三氯甲烷、四氢呋喃、N,N-二甲基甲酰胺、二甲亚砜、甲苯或它们的混合物。上述方法中超声处理的时间为1-10分钟。除分散剂的方法包括直接抽干法、水透析冻干法,根据所用分散剂的不同选择相应的除分散剂的方法,直接抽干法、水透析冻干法为常规技术。除分散剂的压强从0.0001大气压到1大气压,除分散剂的温度在10℃-100℃之间。本专利技术提供的具有以下有益效果原有制备分散度均匀的纳米/微米球的主要方法是透析法和熔融法。透析法通常适用于两亲性聚合物,不适用于憎水性聚合物。熔融法需要较高温度,故只能用于热稳定性高的药物,不宜广泛使用。本专利技术提出的方法既适用于两亲性聚合物,也适用于憎水性聚合物;可在室温下实施,对药物的热稳定性没有特殊要求,且操作简便、容易实施,所得的纳米或微米球粒径分布在100-5000纳米,分散度小于1,可用于多种药物控制释放系统的制备。因此,本专利技术提出的方法可适用于制备以多种聚合物为载体的多种药物控制释放系统,在聚合物的药物控制释放系统的制备中具有重要的应用前景,在生物医用领域具有广泛的应用价值。附图说明图1为实施例1制备的聚(L-丙交酯)纳米微球的形态;图2为实施例5制备的BTMC-GA共聚物纳米微球的形态;图3为实施例5制备的BTMC-GA共聚物纳米微球的粒径分布;图4为实施例6制备的胆固醇封端的LA-GA共聚物的纳米微球的形态;图5实施例7制备的为胆酸功能化的聚丙交酯的纳米微球的形态;图6为实施例8制备的树型高分子PAMAM-OH功能化的聚己内酯(PAMAM-PCL)的纳米微球的形态;具体实施方式实施例1在1份(以质量计)分子量为100000的聚(L-丙交酯)中加入180份四氢呋喃于25℃和常压下,在100W的超声波仪中超声5分钟后,在常温、1大气压下用水泵将四氢呋喃抽尽即得聚(L-丙交酯)的纳米微球。该纳米微球形态由扫描电镜(SEM)测定,(见图1),粒径分布由粒径仪(ZetaSizer)测定。平均粒径660.2纳米,分散度0.349。实施例2在1份(以质量计)分子量为150000的聚(D,L-丙交酯)中加入180份四氢呋喃于40℃和常压下,在50W的超声波仪中超声3分钟后,在10℃、1大气压下用水泵将四氢呋喃抽尽即得聚(D,L-丙交酯)的微球。该微球的粒径分布由粒径仪(ZetaSizer)测定。平均粒径3236纳米,分散度0.332。实施例3在1份(以质量计)分子量为30000的聚己内酯(PCL)中加入130份四氢呋喃和50份超纯水于25℃和常压下,在50W的超声波仪中超声5分钟后,装入截留分子量为8000-12000的透析袋中,在超纯水中透析除去四氢呋喃后,再在20℃、常压下用冻干机除去水,得到聚己内酯(PCL)的微球。该微球的粒径分布由粒径仪(ZetaSizer)测定。平均粒径1941纳米,分散度0.371。实施例4在1份(以质量计)分子量为11000的聚(2,2-二甲基三亚甲基碳酸酯)(PDTC)中加入130份四氢呋喃和50份超纯水于25℃和常压下,在50W的超声波仪中超声3分钟后,装入截留分子量为3500的透析袋中,在超纯水中透析除去四氢呋喃后,再用冻干机除去水,得到聚(2,2-二甲基三亚甲基碳酸酯)(PDTC)的微球。该微球的粒径分布由粒径仪(ZetaSizer)测定。平均粒径3064纳米,分散度0.228。实施例5在1份(以质量计)分子量为20000的BTMC-GA共聚物中加入40份丙酮和40份超纯水于20℃和常压下,在100W的超声波仪中超声5分钟后,装入截留分子量为8000-12000的透析袋中,在超纯水中透析除去四氢呋喃后,再在常温、0.0001大气压下用冻干机除去水,得到BTMC-GA共聚物的纳米微球。该纳米微球形态由扫描电镜(SEM)测定,(见图2),粒径分布由粒径仪(ZetaSizer)测定(见图3)。平均粒径638.1纳米,分散度0.325。实施例6 在1份(以质量计)分子量为2300的胆固醇封端的LA-GA共聚物中加入180份四氢呋喃于5℃和常压下,在100W的超声波仪中超声3分钟后,用水泵将四氢呋喃抽尽即得胆固醇封端的LA-GA共聚物的纳米微球。该纳米微球形态由扫描电镜(SEM)测定,(见图4),粒径分布由粒径仪(ZetaSizer)测定。平均粒径616.7纳米,分散度0.557。胆固醇封端的LA-GA共聚物的结构式如下 实施例7在1份(以质量计)分子量为6000的胆酸功能化的聚丙交酯(结构式见图6)中加入250份无水乙醇于10℃和常压下,在100W的超声波仪中超声5分钟后,用水泵将乙醇抽尽即得胆酸功能化聚丙交酯的纳米微球。该纳米微球形态由扫描电镜(SEM)测定,(见图5),粒径分布由粒径仪(ZetaSizer)测定。平均粒径287.3纳米,分散度O.0846。胆酸功能化的聚丙交酯的结构式如下 实施例8在1份(以质量计)分子量为85800的树型高分子PAMAM-OH功能化的聚己内酯(PAMAM-PCL)中加入90份四氢呋喃和90份超纯水于10℃和常压下,在100W的超声波仪中超声5分钟后,装入截留分子量为8000-12000的透析袋中,在超纯水中本文档来自技高网...
【技术保护点】
一种超声辅助制备聚合物纳米/微米球的方法,其特征在于:在聚合物中加入分散剂后进行超声处理,聚合物即以纳米或微米球的形式分散在分散剂中,除尽分散剂即得分散度均匀、粒径分布在100-5000纳米的纳米或微米球。
【技术特征摘要】
【专利技术属性】
技术研发人员:卓仁禧,程巳雪,邹涛,林光,缪志梅,
申请(专利权)人:武汉大学,
类型:发明
国别省市:83[中国|武汉]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。