一种合成孔径雷达扫描模式图像海冰分类方法技术

技术编号:16080534 阅读:51 留言:0更新日期:2017-08-25 15:47
本发明专利技术公开一种合成孔径雷达扫描模式图像海冰分类方法,包括以下步骤:图像预处理步骤,对合成孔径雷达扫描模式图像进行预处理,获得优化后待分类的合成孔径雷达图像;纹理信息提取及优化步骤,获得满足海冰分类要求的合成孔径雷达纹理信息;海冰分类步骤,基于所述合成孔径雷达纹理信息对海冰进行初步分类;以及海冰分类优化步骤,结合海冰几何信息对所述初步分类结果进行优化。本发明专利技术有效解决了合成孔径雷达扫描模式图像条纹噪声去除后纹理图像中条纹噪声依然明显的问题,并且增加了海冰类型的分类依据,提高了海冰分类精度。

【技术实现步骤摘要】
一种合成孔径雷达扫描模式图像海冰分类方法
本专利技术涉及对地观测领域,具体涉及一种合成孔径雷达扫描模式图像海冰分类方法。
技术介绍
海冰与全球气候、极地环境以及安全息息相关,海冰类型是海冰监测和研究的重要信息。合成孔径雷达(SyntheticApertureRadar:SAR)的全天时、全天候以及穿透云雾的观测能力,使其成为海冰监测的有效工具,基于SAR数据的海冰分类研究已经广泛开展,并且成为海冰遥感研究的热点。SAR扫描模式(ScanSAR)是通过多个雷达子波束来获取数据的,其中每个子波束覆盖全部测绘带的一部分,所有子带图像拼接即可得到宽测绘带图像。ScanSAR图像以其超宽宽幅获取能力特别适合大面积海冰监测的需要。然而,ScanSAR海冰分类存在如下问题:1、海冰雷达回波信号相对较弱,易受到SAR传感器本底噪声的影响,加之,ScanSAR模式在平行飞行方向会产生条纹噪声,在垂直于飞行方向会产生周期性的扇贝效应,这些条纹噪声和扇贝效应影响了海冰分类效果。此外,已有的解决方法通常直接对SAR强度图像进行条纹噪声去除,然后去除条纹后的SAR图像获得的纹理图像依然存在较为明显的条纹,对海冰分类精度的影响依然存在;2、ScanSAR图像入射角范围较大,导致同一类型海冰的后向散射系数在同一景图像中存在差异;3、仅仅采用海冰SAR后向散射强度和纹理信息,易引起海冰类型之间的界限会有模糊,导致某些海冰类型不易区分,因此需要挖掘新的海冰类型识别敏感信息,提高海冰类型识别的精度。
技术实现思路
为了解决上述问题,本专利技术公开一种合成孔径雷达扫描模式图像海冰分类方法,包括以下步骤:图像预处理步骤,对合成孔径雷达扫描模式图像进行预处理,获得优化后待分类的合成孔径雷达图像;纹理信息提取及优化步骤,获得满足海冰分类要求的合成孔径雷达纹理信息;以及海冰分类步骤,基于所述合成孔径雷达纹理信息对海冰进行初步分类;以及海冰分类优化步骤,结合海冰几何信息对所述初步分类结果进行优化。优选为,所述图像预处理步骤包括以下子步骤:归一化子步骤,面向合成孔径雷达扫描模式模式的合成孔径雷达数据的入射角后向散射归一化;去噪子步骤,去除合成孔径雷达图像的斑点噪声;以及条带扇贝条纹去除子步骤,进行面向合成孔径雷达图像的基于卡尔曼滤波的扇贝效应及子带拼接条纹去除,得到优化后待分类合成孔径雷达图像。优选为,所述归一化子步骤中,将合成孔径雷达图像入射角归一化为40度。优选为,所述纹理信息提取及优化步骤包括以下子步骤:纹理信息提取子步骤,利用灰度共生矩阵方法,明确最优纹理参数,获取纹理特征;判断子步骤,判断所述纹理信息是否满足海冰分类要求,如果判断为所述纹理信息满足海冰分类要求,则直接进入所述海冰分类步骤;以及纹理信息优化子步骤,在所述判断子步骤判断为所述纹理信息不满足海冰分类要求的情况下,直接针对纹理信息,基于卡尔曼滤波去除扇贝效应及子带拼接条纹。重复上述纹理信息提取子步骤、判断子步骤、和纹理信息优化子步骤,直到纹理信息满足海冰分类的要求。优选为,所述纹理参数包括方差、均质性、对比度和相关性。优选为,所述海冰分类步骤包括以下子步骤:样本提取子步骤,面向海冰类型提取纹理样本;分类器构建子步骤,基于径向基核函数构建支持向量机分类器;以及分类子步骤,对海冰进行初步分类,获得海冰分类初步结果。优选为,所述海冰分类优化步骤包括以下子步骤:几何信息提取子步骤,利用海冰初步分类结果提取海冰几何信息;以及优化子步骤,结合所述海冰几何信息,基于决策树技术优化海冰分类结果。优选为,所述海冰几何信息包括海冰密集度、冰沟。优选为,所述合成孔径雷达扫描模式图像的幅宽为300~500km。本专利技术的合成孔径雷达扫描模式图像海冰分类方法基于纹理对周期性条纹的敏感性,通过多次迭代处理,消除ScanSAR图像扇贝、子带拼接条纹,解决了SAR强度图像条纹噪声去除后,纹理图像中条纹噪声依然明显的问题。并且,综合考虑海冰纹理和几何信息,增加了海冰类型的分类依据,提高了海冰分类精度。附图说明图1是合成孔径雷达扫描模式图像海冰分类方法的流程图。图2是图像预处理步骤的子流程图。图3是纹理信息提取及优化步骤的子流程图。图4是海冰分类步骤的子流程图。图5是海冰分类优化步骤的子流程图。具体实施方式为了使本专利技术的目的、技术方案及优点更加清楚明白,下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本专利技术,并不用于限定本专利技术。所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本专利技术保护的范围。图1是合成孔径雷达扫描模式图像海冰分类方法的流程图。如图1所示,合成孔径雷达扫描模式(ScanSAR)图像海冰分类方法包括以下步骤:首先在图像预处理步骤S1中,由于海冰分布面积广阔,采用合成孔径雷达扫描模式的超宽宽幅模式,幅宽例如在300~500km的SAR图像进行海冰分类。对合成孔径雷达扫描模式图像进行预处理,获得优化后待分类的合成孔径雷达图像。更具体地来说,如图2所示,ScanSAR模式SAR图像预处理步骤S1包括以下子步骤:在归一化子步骤S11中,由于ScanSAR数据入射角变化范围大,进行面向ScanSAR模式SAR数据的入射角后向散射归一化,将SAR图像入射角归一化为40度。在去噪子步骤S12中,去除SAR图像的斑点噪声。在条带扇贝条纹去除子步骤S13中,进行面向SAR图像的基于卡尔曼滤波的扇贝效应及子带拼接条纹去除,得到优化后待分类SAR图像。接下来,在纹理信息提取及优化步骤S2中,获得满足海冰分类要求的合成孔径雷达纹理信息。在图3中示出了纹理信息提取及优化步骤的子流程图。具体而言,包括以下子步骤:纹理信息提取子步骤S21,利用灰度共生矩阵方法,明确最优纹理参数,获取包括方差、均质性、对比度、相关性等参数的纹理特征;判断子步骤S22,判断所述纹理信息是否满足海冰分类要求,如果判断为所述纹理信息满足海冰分类要求,则直接进入海冰分类步骤S3;以及纹理信息优化子步骤S23,在所述判断子步骤S22判断为所述纹理信息不满足海冰分类要求的情况下,直接针对纹理信息,基于卡尔曼滤波去除扇贝效应及子带拼接条纹。在纹理信息提取及优化步骤S2中,重复上述纹理信息提取子步骤S21、判断子步骤S22、和纹理信息优化子步骤S23,直到纹理信息满足海冰分类的要求。之后,在海冰分类步骤S3中,基于SAR纹理信息对海冰进行初步分类。在图4中示出了海冰分类步骤的子流程图。具体来说,包括样本提取子步骤S31、分类器构建子步骤S32和分类子步骤S33。在样本提取子步骤S31中,进行面向海冰类型的纹理样本提取。在分类器构建子步骤S32中,构建基于径向基核函数(RBF)的支持向量机分类器。在分类子步骤S33中,针对海冰进行初步分类,获得海冰分类初步结果。最后,在海冰分类优化步骤S4中,结合海冰几何信息对所述初步分类结果进行优化。在图5中示出了海冰分类优化步骤的流程图。如图5所示,具体包括几何信息提取子步骤S41和优化子步骤S42。在几何信息提取子步骤S41中,利用海冰初步分类结果提本文档来自技高网...
一种合成孔径雷达扫描模式图像海冰分类方法

【技术保护点】
一种合成孔径雷达扫描模式图像海冰分类方法,其特征在于,包括以下步骤:图像预处理步骤,对合成孔径雷达扫描模式图像进行预处理,获得优化后待分类的合成孔径雷达图像;纹理信息提取及优化步骤,获得满足海冰分类要求的合成孔径雷达纹理信息;海冰分类步骤,基于所述合成孔径雷达纹理信息对海冰进行初步分类;以及海冰分类优化步骤,结合海冰几何信息对所述初步分类结果进行优化。

【技术特征摘要】
1.一种合成孔径雷达扫描模式图像海冰分类方法,其特征在于,包括以下步骤:图像预处理步骤,对合成孔径雷达扫描模式图像进行预处理,获得优化后待分类的合成孔径雷达图像;纹理信息提取及优化步骤,获得满足海冰分类要求的合成孔径雷达纹理信息;海冰分类步骤,基于所述合成孔径雷达纹理信息对海冰进行初步分类;以及海冰分类优化步骤,结合海冰几何信息对所述初步分类结果进行优化。2.根据权利要求1所述的合成孔径雷达扫描模式图像海冰分类方法,其特征在于,所述图像预处理步骤包括以下子步骤:归一化子步骤,面向合成孔径雷达扫描模式的合成孔径雷达数据的入射角后向散射归一化;去噪子步骤,去除合成孔径雷达图像的斑点噪声;条带扇贝条纹去除子步骤,进行面向合成孔径雷达图像的基于卡尔曼滤波的扇贝效应及子带拼接条纹去除,得到优化后待分类合成孔径雷达图像。3.根据权利要求2所述的合成孔径雷达扫描模式图像海冰分类方法,其特征在于,所述归一化子步骤中,将合成孔径雷达图像入射角归一化为40度。4.根据权利要求1所述的合成孔径雷达扫描模式图像海冰分类方法,其特征在于,所述纹理信息提取及优化步骤包括以下子步骤:纹理信息提取子步骤,利用灰度共生矩阵方法,明确最优纹理参数,获取纹理特征;判断子步骤,判断所述纹理信息是否满足海冰分类要求,如果判断为所述纹理信息满足海冰分类要求,则直...

【专利技术属性】
技术研发人员:李新武张露刘惠颖谷昕炜陈杰
申请(专利权)人:中国科学院遥感与数字地球研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1