一种分布式过程监控信源低计算复杂度高可靠编解码算法制造技术

技术编号:16042125 阅读:37 留言:0更新日期:2017-08-20 00:26
本发明专利技术公开了一种分布式过程监控信源低计算复杂度高可靠编解码算法,针对编码端使用随机观测矩阵计算复杂度高的问题,本发明专利技术在编码端使用稀疏二进制观测矩阵,将非相关线性测量中的乘法运算变为加法运算,降低了编码计算复杂度,减少了算法的能量消耗,非常适合传感器节点进行独立编码;针对解码端过度依赖一个边信息,解码可靠性低的问题,本发明专利技术提出基于多边信息的分布式解码恢复算法,主要解决方案为使用多个边信息,通过信号间差分的估计稀疏度和恢复残差两个指标对边信息按照优先级排序,使用最优边信息提高解码准确率,在最优边信息无法获得时使用次优边信息,以此类推,提高解码可靠性。

【技术实现步骤摘要】
一种分布式过程监控信源低计算复杂度高可靠编解码算法
本专利技术涉及信号处理领域,具体涉及一种分布式过程监控信源低计算复杂度高可靠编解码算法。
技术介绍
分布式信源从监控需求上可以被分为分布式实时信源和分布式过程信源两类。分布式实时监控信源是指对信息实时性要求高的信源,例如瓦斯、风速、负压等,这类传感器节点需要在短时间内定时输出一个采样值并传输,要求做到实时编解码。分布式过程监控信源是指对信息实时性要求不高的信源,比如煤矿采空区温度、槽波、微震等,这类传感器节点不需要实时传输,可以多次采集后集中传输。本专利技术研究分布式过程监控信源的编解码算法,由于每个传感器传输的都是一个时间序列,因此分布式过程监控信源不仅具有信号间相关性还具有信号内相关性。分布式压缩感知是一种既能够同时利用信号内相关性又能利用信号间相关性的理论,所以特别适合这种一次通信过程中需要传输多个采样序列值的场合。文章《DistributedCompressiveSensing》中DrorBaron等人提出了分布式压缩感知理论,是一种结合了压缩感知和分布式信源编码优点的理论,不仅能够利用信号内相关性还能利用信号间相关性。在由任意数量传感器和一个中心节点组成的无线传感器网络中,每个传感器与其它传感器互不通信,独立压缩信号传输至中心节点,中心节点联合恢复每个传感器传过来的信号。分布式压缩感知自提出以来,受到了研究人员的大量关注,文章《DistributedCompressiveSensing》中DrorBaron等人提出了三种联合稀疏表示模型(JSM)。Λ:={1,2,……,J}表示全体传感器采集信号序号集合,JSM-1模型中,每一个信号由共同稀疏部分和独立稀疏部分构成。xj=zc+zij,j∈Λ,其中zC=ψθC,zij=ψθj,||θc||0=Kc,||θj||0=Kj,zC是信号的公共部分,在基ψ上稀疏度为Kc,zij为每个信号的独立部分,在基ψ上稀疏度为Kj。以三个信号为例,信号表示如公式(1)所示,信号间关系维恩图解如图1所示,信号间相关性结构如图2所示。JSM-2模型中,公共信息部分为0,每个信号的独立信息部分可以稀疏表示并且有共同的稀疏支撑基,但是非零系数不同,如公式(2)所示。xj=ψθj,j∈{1,2,…,J}其中||θj||0=K,j∈{1,2,…,J}(2)在JSM-3模型中,公共信息部分在任何基下都不能稀疏表示,每个信号的独立部分可以稀疏表示,如公式(3)所示,其中θC没有非零值。xj=zC+zij,zC=ψθC,zij=ψθj,其中||θj||0=Kj,j∈{1,2,…,J}(3)文章《Jointrecoveryalgorithmsusingdifferenceofinnovationsfordistributedcompressedsensing》中DiegoValsesia等人提出了基于单边信息信号差分的分布式压缩感知算法,在编码端使用随机观测矩阵,随机观测矩阵是在文献《Compressedsensing》中提出的,已经被证明满足k阶RIP条件。但是随机观测矩阵只在统计意义下以很高概率满足RIP和弱相关性,不能保证每次随机观测的信号都能精确恢复原始信号。随机观测矩阵在应用时为乘法运算,计算复杂度高。稀疏二进制观测矩阵变乘法运算为加法运算,计算简单。本专利技术在编码端使用WeizhiLu等人在文献《SparseBinaryMatricesofLDPCcodesforCompressedSensing》中提出的基于渐进边增长构造算法(PEG)的稀疏二进制观测矩阵。WeizhiLu等人提出的基于PEG算法的确定性稀疏二进制观测矩阵构造流程如下:观测矩阵可以用tanner图表示,Tanner图是一种双向图,由变量节点、校验节点以及这两类节点之间相连的边组成,变量节点对应于校验矩阵的列,校验节点对应于校验矩阵的行,Tanner图中,与节点相连的边数目称为节点的度,它与校验矩阵的行重或列重一致。假设观测矩阵的变量节点数为n,校验节点数为m,且节点度分布已经给定,将某变量节点bj的度记为dbj,某校验节点的ci的度记为dci,与变量节点集合Vb相连的的边的集合为与bj相连的第k条边记为将该树图中包含的bj深度为l的所有校验节点的集合记为表示,其补集记为PEG算法流程如下:在解码端,基于单边信息信号差分的分布式压缩感知算法中,边信息采用压缩感知方式采样,通过信号观测值与边信息观测值相减去除了信号与边信息之间的公共部分,获得对差分的观测值,然后通过恢复算法恢复出差分,差分与边信息相加得到待编码信号。由于不需要估计公共信息部分,该算法不存在任何误差。另外,边信息采用全采样的方式,信号就可以利用与边信息之间的公共部分少采样,相当于把工作量转移到了采集边信息的传感器,是一种不对称的分布式压缩感知算法。但是,该算法过度依赖一个边信息会造成解码可靠性和有效性低的问题,在该边信息传感器通信中断时会无边信息可用,在该边信息与待恢复信号相关性很小时会造成解码成功率很低。
技术实现思路
本专利技术针对现有技术的不足提出了一种分布式过程监控信源低计算复杂度高可靠编解码算法。本专利技术为实现以上目的,采用如下方案:一种分布式过程监控信源低计算复杂度高可靠编解码算法,其中相关参数如下:边信息集合为S={s1,s2,…sq,…sQ},q=1,2,……,Q,其中sq∈RN;待编码信号集合为W={w1,w2,…wl,…wL},l=1,2,……,L,其中wl∈RN;信号wl的观测矩阵用Φl表示,Φl是一个Ml×N大小的矩阵,Ml<<N,Φl为稀疏二进制观测矩阵;yl为使用观测矩阵对信号wl观测值,yl=Φlwl;△ylq为信号观测值与边信息观测值的差分值,△ylq=yl-Φlsq;为使用贪婪追踪算法从△ylq恢复得到的信号间差分的估计值;为使用的边信息sq得到的信号wl的估计值,rlq为恢复残差,sc为经过选择后使用的边信息,所述算法流程如下:S1、编码端,采用稀疏二进制观测矩阵Φl对信号进行编码得到yl=Φlwl,并将编码后的结果传输至解码端;S2、在解码端,计算yl与每个边信息观测后差值,得到观测后差值△ylq=yl-Φlsq;S3、用贪婪追踪算法从△ylq恢复得到差值估计S4、依据非零元素个数和恢复残差rlq两个指标对边信息按照优先级排序,首先按照非零元素个数由小到大排序,对于非零元素个数相同的边信息按照恢复残差rlq由小到大排序;S5、如果最优边信息通信中断,使用次优边信息,以此类推,直至得到使用的边信息sc;S6、计算信号观测值与边信息sc观测值的差分△ylc=yl-Φlsc;S7、从信号观测值差分△ylc恢复出信号间差分的估计S8、计算信号估计值,本专利技术和现有技术相比,具有如下优点和有益效果:本专利技术提出了分布式过程监控信源低计算复杂度高可靠编解码算法,编码端使用稀疏二进制观测矩阵,变乘法运算为加法运算,降低了计算复杂度;在解码端,使用信号差分估计稀疏度和恢复残差两个指标对边信息进行优先级排序,使用最优边信息提高恢复成功率,在最优边信息通信中断时,使用次优边信息,以此类推,保证使用的是能够得到的与待恢复信号相关性最大的边信息,从而提高解码可靠性。附图说明图1为分布式本文档来自技高网
...
一种分布式过程监控信源低计算复杂度高可靠编解码算法

【技术保护点】
一种分布式过程监控信源低计算复杂度高可靠编解码算法,其中相关参数如下:边信息集合为S={s1,s2,…sq,…sQ},q=1,2,……,Q,其中sq∈R

【技术特征摘要】
1.一种分布式过程监控信源低计算复杂度高可靠编解码算法,其中相关参数如下:边信息集合为S={s1,s2,…sq,…sQ},q=1,2,……,Q,其中sq∈RN;待编码信号集合为W={w1,w2,…wl,…wL},l=1,2,……,L,其中wl∈RN;信号wl的观测矩阵用Φl表示,Φl是一个Ml×N大小的矩阵,Ml<<N,Φl为稀疏二进制观测矩阵;yl为使用观测矩阵对信号wl观测值,yl=Φlwl;△ylq为信号观测值与边信息观测值的差分值,△ylq=yl-Φlsq;为使用贪婪追踪算法从△ylq恢复得到的信号间差分的估计值;为使用的边信息sq得到的信号wl的估计值,rlq为恢复残差,sc为经过选择后使用的边信息,其特征在于,所述算法...

【专利技术属性】
技术研发人员:华钢刘海强黄冬勃徐永刚尹洪胜李璐姜代红
申请(专利权)人:中国矿业大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1