碳纤维复合材料及其制造方法技术

技术编号:1602628 阅读:148 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供了一种碳纤维复合材料,其包含弹性体和分散在该弹性体中的碳纳米纤维,其中该弹性体具有与所述碳纳米纤维有亲和性的不饱和键或基团。本发明专利技术也公开了制造碳纤维复合材料的方法。

【技术实现步骤摘要】

本专利技术涉及。
技术介绍
近来,使用碳纳米纤维的复合材料已经受到了很大的关注。由于结合了碳纳米纤维,人们预期这种复合材料具有改进的机械强度。但是,由于碳纳米纤维的原纤维相互间有强聚集性,将碳纳米纤维均匀分散到复合材料的基材中被认为是非常困难的。因此,目前很难获得具有理想性能的碳纳米纤维复合材料,并且也不可能有效地应用昂贵的碳纳米纤维。
技术实现思路
因此,本专利技术的目的是提供一种碳纤维复合材料,其中碳纳米纤维是均匀分散的。本专利技术的另一个目的是提供碳纤维复合材料的制造方法。从下面的描述中,本专利技术的其它目的和效果将变得很明显。本专利技术的上述目的可通过提供含弹性体和分散于该弹性体中的碳纳米纤维的碳纤维复合材料,其中该弹性体具有与碳纳米纤维有亲合性的不饱和键或基团,来实现。在本专利技术的碳纤维复合材料中,弹性体的不饱和键或基团与碳纳米纤维的活性部分的结合,特别是与碳纳米纤维的端自由基的结合,削弱了碳纳米纤维的聚集力,并能提高其可分散性。因此,本专利技术的碳纤维复合材料可具有碳纤维均匀地分散在作为基材的弹性体中的结构。本专利技术所用的弹性体可以是橡胶弹性体或热塑性弹性体。而且,在橡胶弹性体的情况下,该弹性体可以是交联形式或非交联形式。在橡胶弹性体的情况下,作为起始弹性体,使用非交联形式。根据本专利技术的碳纤维复合材料可含有弹性体和分散在该弹性体中的碳纳米纤维,其中在复合材料中的该弹性体是非交联形式的,并且在150℃下,使用脉冲NMR技术,通过Hahn-回波法测量,其第一自旋-自旋松弛时间(T2n)为100~3000μsec,第二自旋-自旋松弛时间(T2nn)没有或为1000~10000μsec,具有第二自旋-自旋松弛时间的成分的分数(fnn)小于0.2。另外,根据本专利技术的碳纤维复合材料可以包含弹性体和分散在该弹性体中的碳纳米纤维,其中复合材料中的该弹性体是交联形式的,并且在150℃下,使用脉冲NMR技术,通过Hahn-回波法测量,其第一自旋-自旋松弛时间(T2n)为100~2000μsec,第二自旋-自旋松弛时间(T2nn)没有或为1000~5000μsec,具有第二自旋-自旋松弛时间的成分的分数(fnn)小于0.2。本专利技术的碳纤维复合材料具有这样的性质和结构,其中碳纳米纤维均匀分散在作为基材的弹性体中。根据本专利技术用于制造碳纤维复合材料的方法包含通过剪切力,将碳纳米纤维分散到弹性体中的步骤,其中所述弹性体具有与碳纳米纤维有亲合性的不饱和键或基团。根据本专利技术的制造方法,可获得碳纤维复合材料,其中碳纳米纤维具有良好的可分散性和卓越的分散稳定性。将碳纳米纤维分散到弹性体中的步骤可通过剪切力,例如,以下的任何一种方法进行(a)辊距为0.5mm或更小的开放式炼胶机(open-roll)法,(b)具有转子距离1mm或更小的密闭捏合法(closed kneading method),(c)具有螺杆距离0.3mm或更小的多螺杆挤出捏合法。附图说明图1是在本专利技术详细描述部分涉及的,通过开放式炼胶机法,捏合弹性体和碳纳米纤维的工艺的典型示意图。图2是实施例4所获得的复合材料的SEM图像的示意图。图3是起始碳纳米纤维的SEM图像的示意图。图4是实施例7中所获得的组合材料的SEM图像示意图。图5是实施例8中所获得的组合材料的SEM图像示意图。图6是实施例9中所获得的组合材料的SEM图像示意图。图7是实施例7和8中动态储能模量的增加系数的示意图。在图中使用的标号分别表示如下 10第一辊筒20第二辊筒30弹性体40碳纳米纤维具体实施方式下面将参考附图,对本专利技术进行更详细地描述。根据本专利技术的方法包括通过剪切力,将碳纳米纤维分散到弹性体中的步骤。弹性体具有与碳纳米纤维具有亲合性的不饱和键或基团。弹性体优选具有下面的性质,例如除了与碳纳米纤维具有高亲和性以外,一定程度的分子长度和柔韧性。而且,将碳纳米纤维分散到弹性体中的步骤,优选通过用尽可能高的剪切力捏合它们来进行。(a)弹性体弹性体的重均分子量优选为5000~5000000,更优选20000~3000000。当弹性体的分子量在此范围内时,弹性体分子是互相缠绕和互相连接的,因此弹性体很容易穿过聚集的碳纳米纤维原纤维,所以可以获得很大的将碳纳米纤维的原纤维彼此分离的效果。当弹性体的分子量小于5000时,弹性体分子很难充分地缠绕,因此即使在接下来的步骤中应用了剪切力,分离碳纳米纤维的原纤维的效果也降低了。另外,当弹性体的分子量大于5000000时,弹性体的硬度可能太高了,使其难于加工。在30℃下,使用脉冲NMR技术,通过Hahn-回波法测量,在其非交联形式下,弹性体网状成分的自旋-自旋松弛时间(T2n/30℃)优选为100~3000μsec,更优选200~1000μsec。上述范围的自旋-自旋松弛时间(T2n/30℃)可获得具有柔韧性和足够高分子流动性的弹性体。因此,当弹性体与碳纳米纤维混合时,由于其高分子流动性,弹性体能够很容易地穿过碳纳米纤维的原纤维之间的空间。当自旋-自旋松弛时间(T2n/30℃)短于100μsec,弹性体可能不具有足够的分子流动性。而且,当自旋-自旋松弛时间(T2n/30℃)长于3000μsec时,弹性体易于像液体一样流动,并且难于分散碳纳米纤维。另外,在30℃下,使用脉冲NMR技术,通过Hahn-回波法测量,在其交联形式下,弹性体网状成分的自旋-自旋松弛时间(T2n/30℃)优选为100~2000μsec。理由与上述非交联形式的一样。也就是说,当根据本专利技术的方法,交联满足上述要求的非交联形式,获得的交联形式的T2n几乎属于上述范围。使用脉冲NMR技术,通过Hahn-回波法获得的自旋-自旋松弛时间是代表物质的分子流动性的测量值。具体地,当使用脉冲NMR技术,通过Hahn-回波法测量弹性体的自旋-自旋松弛时间时,检测到了第一成分和第二成分,所述第一成分具有第一自旋-自旋松弛时间(T2n),其是较短的松弛时间,所述第二成分具有第二自旋-自旋松弛时间(T2nn),其是较长的松弛时间。第一成分与聚合物的网状成分(主链分子)相应,而第二成分与非网状成分(枝节成分,例如末端链)相应。第一自旋-自旋松弛时间越短,分子流动性越低,弹性体越硬。而且,第一自旋-自旋松弛时间越长,分子流动性越高,弹性体越软。作为脉冲NMR技术中的测量方法,不仅可以利用Hahn-回波方法,而且可以利用固体-回波法,CPMG法(Carr-Purcel-Meiboom-Gill法)或90°脉冲法。但是,因为根据本专利技术的碳纤维复合材料具有中等程度的自旋-自旋松弛时间(T2),Hahn回波法最适用。通常,固体-回波法和90°脉冲法适于测量短T2,Hahn回波法适于中等程度的T2,而CPMG法适于长T2。弹性体在其主链、侧链和末端链中的至少一个里,具有与碳纳米纤维有亲和性的不饱和键或基团,特别是其端自由基,或者具有易于形成这种自由基或基团的性质。此种不饱和键或基团可以是选自下列的至少一种双键、三键以及官能团例如α-氢、羰基、羧基、羟基、氨基、腈基、酮基、酰胺基、环氧基、酯基、乙烯基、卤素基团、氨基甲酸乙酯基、缩二脲基,脲基甲酸酯基和脲基。碳纳米纤维通常由在侧面的碳原子的六员环构成,并且具有在其末端引入的五员环的封闭结构。但是,因本文档来自技高网...

【技术保护点】
一种碳纤维复合材料,其包含弹性体和分散在该弹性体中的碳纳米纤维,其中该弹性体具有与所述碳纳米纤维有亲和性的不饱和键或基团。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:野口彻深泽茂清水修一
申请(专利权)人:日信工业株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利