一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法技术

技术编号:15971621 阅读:14 留言:0更新日期:2017-08-11 22:58
本发明专利技术涉及一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,属于无机非金属材料技术领域。利用稀土元素氧化物的硝酸溶液和氧氯化锆的水溶液在过量氨水中发生的化学共沉淀反应,得到前驱体粉体;将所得的前驱体粉体进行预煅烧,再利用放电等离子烧结技术进行烧结,得到所述稀土锆酸盐陶瓷块体材料。本发明专利技术所述方法利用放电等离子烧结技术的烧结温度低、加热时间短的优势抑制晶粒长大,且致密度达到92%以上;而且该方法工艺简单,制备周期短,不用添加烧结助剂,可以得到高纯相的陶瓷材料。

【技术实现步骤摘要】
一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法
本专利技术涉及一种稀土锆酸盐陶瓷块体材料的制备方法,特别涉及一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,属于无机非金属材料

技术介绍
随着航空燃气轮机向高流量比、高推重比、高进口温度的方向发展,燃烧室中的燃气温度和压力不断提高,现有的高温合金和冷却技术难以满足需要。因此,单独使用高温结构材料技术已不能满足先进航空发动机迅速发展的迫切要求。研究表明,在高温合金表面添加厚度为100μm~500μm且性能良好的热障涂层,可以使高温合金表面降低100℃~200℃,这使得航空燃气轮机可以在超过高温合金熔点(1300℃)的温度下正常使用,从而大大提高发动机的效率和性能,因此,热障涂层是航空航天发动机和燃气轮机高温部件的关键材料。目前广泛使用的氧化钇部分稳定的传统热障涂层材料YSZ在高温(1200℃以上)时,会发生相变加剧、易烧结等现象,进而导致涂层失效不能满足目前使用要求。稀土锆酸盐Ln2Zr2O7陶瓷因其热导率较低、使用温度较高以及高温相稳定性良好等优点,而成为新型热障涂层候选材料,但稀土锆酸盐存在脆性大、韧性不足等缺点,严重制约了其广泛推广使用。纳米化是目前较有效解决稀土锆酸盐陶瓷脆性问题的方法之一。采用稀土锆酸盐陶瓷块体对晶粒尺寸与热导率和断裂韧性等关系进行研究是较为高效的方式,但是稀土锆酸盐陶瓷在烧结致密化的过程中,由于较高的烧结温度和较长的烧结时间,其晶粒不可避免的随之长大,无法形成较致密的纳米陶瓷块体。
技术实现思路
针对现有技术中存在的不足,本专利技术的目的在于提供一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,所述方法可以在得到较高致密度陶瓷的条件下维持原始粉体的亚微米晶粒尺寸,避免了高温烧结期间晶粒剧烈的长大;所制备的稀土锆酸盐陶瓷致密度达到92%以上,晶粒尺寸在300nm~800nm,从而可以进行晶粒尺寸对稀土锆酸盐陶瓷块体材料的性能进行研究。本专利技术的目的是通过以下技术方案实现的:一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,所述方法的具体步骤如下:步骤1.先将稀土元素的氧化物溶于稀硝酸中,再加入ZrOCl2·8H2O的水溶液,得到混合溶液;再将混合溶液滴加到过量氨水中进行化学共沉淀反应,且反应完成后反应体系的pH在10~11之间,将反应产生的沉淀物进行洗涤、过滤、干燥,得到前驱体粉体;步骤2.先将所得的前驱体粉体进行球磨粉碎,再经过检验筛,得到粒径为20μm~80μm的粉体Ⅰ;将粉体Ⅰ在1100℃~1250℃煅烧2h~4h,得到粉体II;步骤3.将粉体II放入石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa~50MPa的压力,再以100℃/min~150℃/min的升温速率加热到1200℃~1400℃,保压保温5min~10min后,随炉冷却,石墨模具中的固体即为所述亚微米级稀土锆酸盐陶瓷块体材料。步骤1所述的混合溶液中,稀土元素的摩尔数与锆元素的摩尔数比为1:1;所述亚微米级稀土锆酸盐陶瓷块体材料中的晶粒尺寸为300nm~800nm。所述稀土锆酸盐陶瓷块体材料中的稀土元素优选Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb或者Lu。步骤2中,优选在300r/min~400r/min下球磨粉碎10min~20min。有益效果:(1)本专利技术提供了一种高致密度亚微米级A2Zr2O7(稀土锆酸盐)陶瓷块体材料的制备方法,利用SPS(放电等离子烧结)技术的烧结温度低、加热时间短的优势抑制A2Zr2O7的晶粒长大,所制备的A2Zr2O7陶瓷材料中晶粒尺寸在300nm~800nm,且致密度达到92%以上,从而解决了A2Zr2O7材料在烧结致密过程中晶粒剧烈长大的问题。(2)本专利技术所述制备方法简单,制备周期短,而且不用添加烧结助剂,可以得到高纯相的A2Zr2O7陶瓷材料。附图说明图1为实施例1中制备的Sm2Zr2O7粉体未烧结前的扫描电子显微镜(SEM)图。图2为实施例1中制备的亚微米级Sm2Zr2O7陶瓷块体材料的X射线衍射(XRD)图。图3为实施例1中制备的亚微米级Sm2Zr2O7陶瓷块体材料的断面扫描电子显微镜(SEM)图。图4为实施例2中制备的亚微米级La2Zr2O7陶瓷块体材料的X射线衍射图。图5为实施例2中制备的亚微米级La2Zr2O7陶瓷块体材料的断面扫描电子显微镜图。具体实施方式下面结合具体实施方式对本专利技术做进一步说明。以下实施例中所用试剂如下表所示:以下实施例中所用仪器如下表所示:致密度计算公式:致密度=(m1×DL)/((m3-m2)×D)×100%;其中,m1为块体干重,m2为块体浮重,m3为块体湿重,DL为水的密度,D为材料的理论密度。实施例1亚微米级Sm2Zr2O7陶瓷块体材料的制备:(1)将1000gZrOCl2·8H2O溶于950mL去离子水中,将540gSm2O3溶于3000mL质量分数为30%的稀硝酸中,然后将氧氯化锆的水溶液与氧化钐的硝酸溶液混合,得到混合溶液;再将混合溶液滴加到2000mL质量分数为17%的氨水中进行化学共沉淀反应,且反应完成后反应体系的pH为10,将反应产生的沉淀物进行洗涤、过滤并置于烘箱中干燥,得到前驱体粉体;(2)将所得的前驱体粉体置于行星球磨机中,球料比为4:1,在300r/min下球磨20min后,将球磨后的粉体经过检验筛,得到粒径为20μm~80μm的粉体;再将该粉体在1250℃下煅烧4h,得到Sm2Zr2O7粉体;(3)将3g步骤(2)中所得的Sm2Zr2O7粉体放入内径为Φ20.4mm、压头直径为Φ20mm的石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa的压力,再以100℃/min的升温速率加热到1200℃,保压保温5min后,随炉冷却,石墨模具中的固体即为所述亚微米级Sm2Zr2O7陶瓷块体材料。对所制得的亚微米级Sm2Zr2O7陶瓷块体材料进行表征,结果如下:从图2中的XRD谱图可以看出,所制备的陶瓷块体材料为纯Sm2Zr2O7相,无其他杂相。从图3中的断面SEM图中可以看到,Sm2Zr2O7陶瓷块体材料中晶粒大小为400nm~600nm,与烧结前Sm2Zr2O7粉体的颗粒粒径(如图1所示)相比,烧结后的晶粒无明显长大。根据阿基米德排水法测得平均致密度为93.7%。实施例2亚微米级La2Zr2O7陶瓷块体材料的制备:(1)将1000gZrOCl2·8H2O溶于950mL去离子水中,将505gLa2O3溶于3200mL质量分数为30%的稀硝酸中,然后将氧氯化锆的水溶液与氧化镧的硝酸溶液混合,得到混合溶液;再将混合溶液滴加到2100mL质量分数为17%的氨水中进行化学共沉淀反应,且反应完成后反应体系的pH为10.7,将反应产生的沉淀物进行洗涤、过滤并置于烘箱中干燥,得到前驱体粉体;(2)将所得的前驱体粉体置于行星球磨机中,球料比为4:1,在400r/min下球磨10min后,将球磨后的粉体经过检验筛,得到粒径为得到粒径为20μm~80μm的粉体;再将该粉体在1200℃下煅烧4h,得到La2Zr2O7粉体;(3)将3g步骤(2)中所得的La2Zr2O7粉体放入内径为Φ20.4mm、压头直径为Φ20mm的石本文档来自技高网...
一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法

【技术保护点】
一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,其特征在于:所述方法的具体步骤如下:步骤1.先将稀土元素的氧化物溶于稀硝酸中,再加入ZrOCl2·8H2O的水溶液,得到混合溶液;再将混合溶液滴加到过量氨水中进行化学共沉淀反应,且反应完成后反应体系的pH在10~11之间,将反应产生的沉淀物进行洗涤、过滤、干燥,得到前驱体粉体;步骤2.先将所得的前驱体粉体进行球磨粉碎,再经过检验筛,得到粒径为20μm~80μm的粉体Ⅰ;将粉体Ⅰ在1100℃~1250℃煅烧2h~4h,得到粉体II;步骤3.将粉体II放入石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa~50MPa的压力,再以100℃/min~150℃/min的升温速率加热到1200℃~1400℃,保压保温5min~10min后,随炉冷却,石墨模具中的固体即为所述亚微米级稀土锆酸盐陶瓷块体材料;步骤1所述的混合溶液中,稀土元素的摩尔数与锆元素的摩尔数比为1:1。

【技术特征摘要】
1.一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,其特征在于:所述方法的具体步骤如下:步骤1.先将稀土元素的氧化物溶于稀硝酸中,再加入ZrOCl2·8H2O的水溶液,得到混合溶液;再将混合溶液滴加到过量氨水中进行化学共沉淀反应,且反应完成后反应体系的pH在10~11之间,将反应产生的沉淀物进行洗涤、过滤、干燥,得到前驱体粉体;步骤2.先将所得的前驱体粉体进行球磨粉碎,再经过检验筛,得到粒径为20μm~80μm的粉体Ⅰ;将粉体Ⅰ在1100℃~1250℃煅烧2h~4h,得到粉体II;步骤3.将粉体II放入石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa~50MPa...

【专利技术属性】
技术研发人员:郭巍刘玲马壮
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1