涡轮基双燃烧室冲压组合循环发动机控制方法技术

技术编号:15933833 阅读:59 留言:0更新日期:2017-08-04 19:13
本发明专利技术的目的在于克服现有技术不足,提供一种涡轮基双燃烧室冲压组合循环发动机控制方法,解决现有涡轮冲压组合发动机不能在较低马赫数接力等问题。本发明专利技术首先针对双燃烧室冲压发动机进行改进,燃烧室采用矩形并联布局,且针对其进气道进行改进,该进气道采用二元进气道构型,并沿流向由支板分割为亚燃流道和超燃流道,所述亚燃通道至少为一个,所述超燃流道至少为两个且均分在亚燃流道两侧,通过在各流道设计中增加内收缩段调节型面和扩张段调节型面,以控制进气道喉道面积大小,实现各燃烧室对不同压缩程度空气的需要,拓宽发动机工作马赫数范围、提高发动机性能。

Turbine based double combustion chamber ramjet combined cycle engine control method

The aim of the invention is to overcome the defects in the prior art and provides a turbine based dual combustor ramjet combined cycle engine control method, can not solve the existing turbo ramjet at low Maher number of relay. The invention firstly dual combustor ramjet combustion chamber is improved, using parallel rectangular layout, and the inlet of the inlet is improved by two yuan of inlet configuration, and consists of a supporting plate along the flow direction is divided into ramjet and scramjet flow channel, the channel is at least a ramjet, the scramjet the channel is at least two and average in ramjet flow on both sides, adjust the surface and expansion by increasing the surface adjustment in each channel design in the contraction section, in order to control the inlet throat size, the combustion chamber of different degree of compression air engine, broaden the Maher number range and improve the engine performance.

【技术实现步骤摘要】
涡轮基双燃烧室冲压组合循环发动机控制方法
本专利技术属于组合发动机
,具体涉及涡轮基双燃烧室冲压组合循环发动机控制方法。
技术介绍
临近空间高超声速飞行任务、空天飞行任务等对具备宽空域、宽速域工作能力的高性能新型动力提出了迫切的需求,技术成熟的火箭发动机、涡轮发动机和冲压发动机各有优势,但都无法单独完成上述任务。为适应该任务需求,目前可以以上述三种发动机技术为基础组成新的热力循环方案,从而拓宽工作范围,于是演变出涡轮冲压组合(TBCC,TurboBasedCombinedCycle)、TRIJET等组合发动机方案。上述TBCC、TRIJET组合发动机仍存在以下缺陷:TBCC受高速涡轮机技术制约,无法实现与双模态冲压发动机的很好接力。近期国内提出拟采用现役涡轮构建并联TBCC方案,拟通过引射火箭增推或喷水预冷等解决接力问题,但这样会增加系统复杂性和质量代价。TRIJET采用通过引入引射冲压发动机,实现现役涡轮发动机和双模态冲压发动机之间的推力衔接,但由于采用三通道结构,面临系统复杂、结构质量大等问题。双燃烧室冲压发动机比双模态超燃冲压发动机工作马赫数下限更低,为Ma3.3左右,借助可调进气技术,其工作马赫数下限可进一步下拓至Ma2.5左右,因此涡轮发动机与双燃烧室冲压发动机的组合方案更有助于解决“推力鸿沟”难题,基于货架涡轮发动机的组合动力方案更为可行。然而现有双燃烧室冲压发动机为轴对称构型,采用轴对称进气道,更适用于轴对称布局,在流道及结构设计方面难以实现与涡轮通道并联布置且共用进气系统,并且现有技术采用固定几何进气道,难以适应更宽工作马赫数范围。专
技术实现思路
本专利技术的目的在于克服现有技术不足,提供一种涡轮基双燃烧室冲压组合循环发动机控制方法,解决现有涡轮冲压组合发动机不能在较低马赫数接力等问题。本专利技术的技术解决方案:涡轮基双燃烧室冲压组合循环发动机控制方法,包括高速通道和低速通道,所述高速通道和低速通道并联设置,且共用进气道和尾喷管,所述高速通道包括双燃烧室冲压发动机,所述低速通道包括涡轮核心机,所述双燃烧室冲压发动机包括双燃烧室冲压进气道,亚声速燃烧室和超声速燃烧室,且所述亚声速燃烧室和超声速燃烧室采用矩形并联布局;所述冲压进气道采用二元进气道构型,并沿流向由支板分割为亚燃流道和超燃流道,所述亚燃流道至少为一个且与亚声速燃烧室相连,所述超燃流道至少为两个且均分在亚燃流道两侧,所述超燃流道分别连接超声速燃烧室;所述亚燃和超燃流道结构一致:由固定型面、可调型面及连接铰链构成,其中,所述固定型面包括外压缩型面、内收缩段型面、喉道型面、扩张段型面、唇口型面以及与燃烧室连接型面;所述可调型面包括内收缩段调节型面和扩张段调节型面,所述内收缩段调节型面和扩张段调节型面的一端分别固定于内收缩段起点和扩张段终点,另一端分别为活动端,所述连接铰链包括铰链a和b,所述铰链a和b分别位于内收缩段起点和扩张段终点,且所述内收缩段调节型面和扩张段调节型面可分别绕着所述铰链a和b按设计旋转角度进行旋转;所述组合循环发动机的控制方法包括:飞行器从地面起飞时,所述进气分流板处于同时开启低速通道和高速通道的位置,空气经进气道压缩后分别进入低速通道和高速通道,由进气分流板的位置确定分配给低速通道和高速通道的空气流量,所述涡轮核心机启动工作,高速通道保持通流状态,排气调节挡板位于尾喷管中间位置,所述冲压进气道各流道中的内收缩段调节型面和扩张段调节型面分别与内收缩段型面和扩张段型面贴合;当飞行马赫数到达第一马赫数时,进气分流板向上移动,关闭低速通道,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面分别紧贴内收缩段型面和扩张段型面,亚声速燃烧室和超声速燃烧室开始点火,所述亚声速燃烧室和超声速燃烧室均为亚燃模态,当进气分流板转到关闭低速通道的位置,涡轮核心机停止工作,排气调节挡板向上转动到关闭低速通道出口,模态接力完成;当飞行马赫数到达第二马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面开始进行旋转,随着飞行马赫数的增加,控制亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室和超声速燃烧室均处于亚燃模态;当飞行马赫数到达第三马赫数,超燃流道的内收缩段调节型面和扩张段调节型面停止旋转调节,随着飞行马赫数的增大,超声速燃烧室逐渐由亚燃模态向超燃模态转变;当飞行马赫数到达第四马赫数,超声速燃烧室处于超燃模态,完成模态转变,随着飞行马赫数的增大,超燃流道的内收缩段调节型面和扩张段调节型面仍停止,未旋转调节;当飞行马赫数到达第五马赫数,超燃流道的内收缩段调节型面和扩张段调节型面开始旋转调节,随着飞行马赫数的增大,使得所述超声速燃烧室始终处于超燃模态;当飞行马赫数达到第六马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面均停止旋转调节,所示亚声速燃烧室始终处于亚燃模态,超声速燃烧室始终处于超燃模态;所述第二马赫数和第六马赫数之间,控制亚燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室始终处于亚燃模态。进一步的,在旋转调节过程中,所述内收缩段调节型面和扩张段调节型面的活动端距离唇口型面的垂直距离始终保持相等。进一步的,所述内收缩段调节型面和扩张段调节型面旋转后,所述内收缩段调节型面、内收缩段型面、喉道型面、扩张段型面和扩张段调节型面围成一个凹腔,在凹腔内形成涡流作为流道的气动喉道型面,该气动喉道型面对应的喉道高度定义为可调型面旋转后流道的喉道高度Hth,通过公式(1)得到:其中,Hth为可调型面旋转后流道喉道高度,Hc为进气道流道捕获高度,q(Ma)为流量函数,Ma0和Math分别为来流马赫数和进气道流道喉道马赫数,为流量系数,σth为流道喉道总压恢复系数。进一步的,所述旋转角度包括内收缩段调节型面的旋转角度θ7和扩张段调节型面的旋转角度θ8,由公式(2)得到;其中,H7为内收缩段调节型面固定端与唇口型面垂直高度,H8为扩张段调节型面固定端与唇口型面垂直高度,Hth为可调型面旋转后流道喉道高度,L7为内收缩段调节型面两端点间距离,L8为扩张段调节型面两端点间距离,θ2为内收缩段型面两端点连线与喉道型面之间的角度(取锐角),θ4为扩张段型面两端点连线与喉道型面之间的角度(取锐角)。所述旋转角度θ7和θ8为0°时,所述内收缩段调节型面和扩张段调节型面分别与内收缩段型面和扩张段型面贴合;所述旋转角度θ7和θ8为最大值时,所述内收缩段调节型面和扩张段调节型面完全关闭所述流道。进一步的,所述低速通道和高速通道还共用进气道,所述进气道内设有用于控制所述涡轮核心机和所述双燃烧室冲压发动机进气气流分配的进气分流板。进一步的,在所述高速通道和所述低速通道相交处安有铰链c,所述铰链c控制所述进气分流板在所述低速通道和高速通道之间旋转,旋转角度范围以能完全关闭高速通道或低速通道的原则来确定。进一步的,所述低速通道和高速通道还共用尾喷管,所述喷管内设有用于控制所述涡轮发动机和所述双燃烧室冲压发动机气体排出的排气调节挡板。进一步的,所述低速通道末端邻近气流出口的一条边所在位置安有铰链d,所述铰链d控制所述排气调节挡板在所述低速通道和高速通道之间旋转。进一步的,所述分流板和所述排气调节挡本文档来自技高网
...
涡轮基双燃烧室冲压组合循环发动机控制方法

【技术保护点】
涡轮基双燃烧室冲压组合循环发动机控制方法,其特征在于,包括高速通道和低速通道,所述低速通道包括涡轮核心机,所述高速通道包括双燃烧室冲压发动机;所述双燃烧室冲压发动机包括双燃烧室冲压进气道,亚声速燃烧室和超声速燃烧室;所述冲压进气道采用二元进气道构型,由沿流向由支板分割为亚燃流道和超燃流道,所述超燃流道至少为两个且均分在亚燃流道两侧;所述亚燃和超燃流道结构一致,由固定型面、可调型面及连接铰链构成,其中,所述固定型面包括外压缩型面、内收缩段型面、喉道型面、扩张段型面、唇口型面以及与燃烧室连接型面;所述可调型面包括内收缩段调节型面和扩张段调节型面,所述连接铰链包括铰链a和b,所述内收缩段调节型面和扩张段调节型面的一端分别通过铰链a和b固定于内收缩段起点和扩张段终点;所述组合循环发动机的控制方法包括:飞行器从地面起飞时,所述进气分流板处于同时开启低速通道和高速通道的位置,空气经进气道压缩后分别进入低速通道和高速通道,由进气分流板的位置确定分配给低速通道和高速通道的空气流量,所述涡轮核心机启动工作,高速通道保持通流状态,排气调节挡板位于尾喷管中间位置,所述冲压进气道各流道中的内收缩段调节型面和扩张段调节型面分别与内收缩段型面和扩张段型面贴合;当飞行马赫数到达第一马赫数时,进气分流板向上移动,关闭低速通道,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面分别紧贴内收缩段型面和扩张段型面,亚声速燃烧室和超声速燃烧室开始点火,所述亚声速燃烧室和超声速燃烧室均为亚燃模态,当进气分流板转到关闭低速通道的位置,涡轮核心机停止工作,排气调节挡板向上转动到关闭低速通道出口,模态接力完成;当飞行马赫数到达第二马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面开始进行旋转,随着飞行马赫数的增加,控制亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室和超声速燃烧室均处于亚燃模态;当飞行马赫数到达第三马赫数,超燃流道的内收缩段调节型面和扩张段调节型面停止旋转调节,随着飞行马赫数的增大,超声速燃烧室逐渐由亚燃模态向超燃模态转变;当飞行马赫数到达第四马赫数,超声速燃烧室处于超燃模态,完成模态转变,随着飞行马赫数的增大,超燃流道的内收缩段调节型面和扩张段调节型面仍停止,未旋转调节;当飞行马赫数到达第五马赫数,超燃流道的内收缩段调节型面和扩张段调节型面开始旋转调节,随着飞行马赫数的增大,使得所述超声速燃烧室始终处于超燃模态;当飞行马赫数达到第六马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面均停止旋转调节,所示亚声速燃烧室始终处于亚燃模态,超声速燃烧室始终处于超燃模态;所述第二马赫数和第六马赫数之间,控制亚燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室始终处于亚燃模态。...

【技术特征摘要】
1.涡轮基双燃烧室冲压组合循环发动机控制方法,其特征在于,包括高速通道和低速通道,所述低速通道包括涡轮核心机,所述高速通道包括双燃烧室冲压发动机;所述双燃烧室冲压发动机包括双燃烧室冲压进气道,亚声速燃烧室和超声速燃烧室;所述冲压进气道采用二元进气道构型,由沿流向由支板分割为亚燃流道和超燃流道,所述超燃流道至少为两个且均分在亚燃流道两侧;所述亚燃和超燃流道结构一致,由固定型面、可调型面及连接铰链构成,其中,所述固定型面包括外压缩型面、内收缩段型面、喉道型面、扩张段型面、唇口型面以及与燃烧室连接型面;所述可调型面包括内收缩段调节型面和扩张段调节型面,所述连接铰链包括铰链a和b,所述内收缩段调节型面和扩张段调节型面的一端分别通过铰链a和b固定于内收缩段起点和扩张段终点;所述组合循环发动机的控制方法包括:飞行器从地面起飞时,所述进气分流板处于同时开启低速通道和高速通道的位置,空气经进气道压缩后分别进入低速通道和高速通道,由进气分流板的位置确定分配给低速通道和高速通道的空气流量,所述涡轮核心机启动工作,高速通道保持通流状态,排气调节挡板位于尾喷管中间位置,所述冲压进气道各流道中的内收缩段调节型面和扩张段调节型面分别与内收缩段型面和扩张段型面贴合;当飞行马赫数到达第一马赫数时,进气分流板向上移动,关闭低速通道,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面分别紧贴内收缩段型面和扩张段型面,亚声速燃烧室和超声速燃烧室开始点火,所述亚声速燃烧室和超声速燃烧室均为亚燃模态,当进气分流板转到关闭低速通道的位置,涡轮核心机停止工作,排气调节挡板向上转动到关闭低速通道出口,模态接力完成;当飞行马赫数到达第二马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面开始进行旋转,随着飞行马赫数的增加,控制亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室和超声速燃烧室均处于亚燃模态;当飞行马赫数到达第三马赫数,超燃流道的内收缩段调节型面和扩张段调节型面停止旋转调节,随着飞行马赫数的增大,超声速燃烧室逐渐由亚燃模态向超燃模态转变;当飞行马赫数到达第四马赫数,超声速燃烧室处于超燃模态,完成模态转变,随着飞行马赫数的增大,超燃流道的内收缩段调节型面和扩张段调节型面仍停止,未旋转调节;当飞行马赫数到达第五马赫数,超燃流道的内收缩段调节型面和扩张段调节型面开始旋转调节,随着飞行马赫数的增大,使得所述超声速燃烧室始终处于超燃模态;当飞行马赫数达到第六马赫数,所述亚燃流道和超燃流道的内收缩段调节型面和扩张段调节型面均停止旋转调节,所示亚声速燃烧室始终处于亚燃模态,超声速燃烧室始终处于超燃模态;所述第二马赫数和第六马赫数之间,控制亚燃流道的内收缩段调节型面和扩张段调节型面旋转,使得所述亚声速燃烧室始终处于亚燃模态。2.根据权利要求1所述的方法,其特征在于,所述内收缩段调节型面和扩张段调节型面旋转后,所述内收缩段调节型面、内收缩段型面、喉道型面、扩张段型面和扩张段调节型面围成一个凹腔,在凹腔内形成涡流作为流道的气动喉道型面,该气动喉道型面对应的喉道高度定义为...

【专利技术属性】
技术研发人员:侯金丽赵文胜郭金鑫李亭鹤凌文辉
申请(专利权)人:北京动力机械研究所北京空天技术研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1