当前位置: 首页 > 专利查询>浙江大学专利>正文

一种基于数据挖掘的立磨运行调控系统及方法技术方案

技术编号:15894561 阅读:166 留言:0更新日期:2017-07-28 19:27
本发明专利技术公开了一种基于数据挖掘的立磨运行调控系统及方法,利用一种综合的特征筛选方法对工况数据进行挖掘分析,得到立磨健康状态评估指标;对工况状态进行聚类挖掘分析,得到的各个工况簇的特点,获得历史工况中的各个状态分布情况;定义历史工况中的运行状态类别,得到稳定模式工况库;利用ARIMA算法对立磨健康状态特征获取模块中确定的特征值训练模型,对参数的变化趋势进行预测,用预测值辅助状态识别;结合ARIMA模型给出的预测值,对立磨的运行状态进行判断,当判定为异常时,从稳定工况模式库中读取工况记录,得到推荐的调控目标值,对该时刻的可控参数进行调控。本发明专利技术可以准确地给出立磨的定性和定量调控建议,实现磨机长期稳定运行。

Vertical mill operation control system and method based on Data Mining

The invention discloses a grinding operation control system and method of data mining based on the use of a comprehensive feature selection methods analyze the condition data, get the mill health assessment index; cluster analysis on mining condition, characteristics of various working conditions of the cluster, the state distribution in history in the condition of running state; the categories defined in historical conditions, stable working mode base; using the ARIMA algorithm to mill health feature acquisition module characteristics determine the value of training model, the trend of changes of the parameter prediction, auxiliary state recognition with predictive value; combined with the ARIMA model prediction value is given, the running state of the vertical mill the judge, when judged to be abnormal, read the condition record from stable condition pattern library, get the target value of the recommendation. The controllable parameters of the moment are controlled. The present invention can accurately provide qualitative and quantitative control suggestions for vertical mills, and realize long-term stable operation of mills.

【技术实现步骤摘要】
一种基于数据挖掘的立磨运行调控系统及方法
本专利技术涉及水泥流程工业领域的矿渣粉磨领域,特别涉及一种基于数据挖掘的立磨运行调控系统和方法。
技术介绍
立磨是一种用于将大颗粒的矿渣等物料研磨至细微颗粒的设备,主要对建材、化工、钢铁等行业产生的废渣进行粉磨,实现废渣的再利用,经研磨得到的微粉通常作为水泥生产的原料。但是矿渣粉磨系统工艺复杂,工作环境恶劣,长期高负荷运行,同时立磨生料粉磨过程具有强耦合、非线性、大滞后等特点,且存在物理、化学变化,建立准确的立磨生料粉磨过程机理模型很难。因此,何准确地建立立磨生料粉磨过程的模型并对立磨生料粉磨过程关键参数进行优化控制,是亟待要解决的问题。目前,有很多学者对立磨生料粉磨过程建模进行了深入研究。秦伟等人将支持向量机和多元回归方程应用于立磨粉磨过程的模型的建立,通过模糊聚类分析建立了立磨粉磨过程的专家数据库,有效的指导了粉磨过程。颜文俊等人通过应用最小二乘法建立了立磨回路模型,并通过此模型对立磨回路进行优化控制,显示了良好的控制精度。刘志鹏等人通过将最小二乘法与支持向量机相结合的方法,对粉磨系统建立了预测模型,比较准确的预测了立磨运行过程中分离器电流的变化,得到了较高的预测精度。也有学者采用人工神经网络方法在立磨生料粉磨过程建模。李瑞莲等人应用BP神经网络对生料磨机建立了神经网络模型,基于神经网络模型,得出了生料最优配料比。高鹏等人应用对立磨系统进行了模型辨识,建立了模糊神经网络模型,分析了各因素对立磨振动的影响,该方法避免了陷入局部极小的可能,网络模型具有良好的泛化能力,很好地解决了非线性立磨系统建模问题。在上述立磨生料粉磨过程的各种模型中,多数研究人员只探究了立磨运行过程中指标之间一对一的相互关系以及它们对于立磨运行的影响,但是立磨是一个多变量相互親合的系统,变量之间相互影响,其中一个指标的变化会影响其他指标,进而会对立磨的整体运行状态产生很大影响。因此,建立一个综合指标的预测模型具有重要意义。
技术实现思路
随着微粉行业的自动化和信息化程度的提高,DCS控制系统在工厂中得到了普遍应用,数据库中积累了大量生产数据。为了解决以上技术问题,本专利技术提供一种基于数据挖掘的立磨运行调控系统与方法。具体技术方案如下:一种基于数据挖掘的立磨运行调控系统,包括:数据预处理模块、立磨健康状态评估指标挖掘模块、立磨健康状态聚类分析模块、立磨状态评估指标特征获取模块、立磨实时特征参数预测模块,其中:数据预处理模块,对立磨采集的数据进行异常值处理、空值处理、离散化处理和归一化处理,为数据的挖掘分析做好了准备;立磨健康状态评估指标挖掘模块,利用一种综合的特征筛选方法对工况数据进行挖掘分析,得到影响立磨稳定的关键参数,作为立磨健康状态评估的指标;立磨健康状态聚类分析模块,基于确定的立磨健康状态评估的指标,对工况状态进行聚类挖掘分析,得到稳定模式工况库;立磨状态评估指标特征获取模块,分析立磨运行状态下的采集的实时数据的特点,确定进行实时状态判断的特征值及其获取方法;立磨实时特征参数预测模块,利用ARIMA算法对立磨健康状态特征获取模块中确定的特征值进行模型训练,预测参数的变化趋势,用预测值辅助状态识别。进一步地,所述的数据预处理模块中,数据异常值处理、空值处理,通过数据筛选和数据清洗实现。离散化处理和归一化处理,由特征简约和数据变换实现。进一步地,所述的立磨健康状态评估指标挖掘模块中,一种综合的特征筛选方法由随机lasso、岭回归、随机森林、稳定性选择和递归特征消除这五种方法综合组成。筛选算法是通过求解输入变量和输出变量之间的关系,分别使用五种方法对每个特征的重要性予以打分,对五种得分情况进行处理,按照处理后的得分结果对特征的重要度进行评估,确定待选特征集中的关键特征。进一步地,进行立磨运行关键特征筛选的具体步骤如下:1)以振动作为输出y,以其他特征为输入x,分别使用五种方法对待选特征集进行筛选,计算每个特征的得分;2)不同的方法特征筛选的机制不一样,为消除筛选机制的不同造成的分数差异,对每种算法的得分结果都利用最大最小值的规范化方法进行了处理,把得分限制在了[0,1]之间,然后求每个参数特征的平均得分,把平均值作为特征重要性排序的依据,进行特征值选择。3)对参数的综合得分进行分析,结合参数的可控性和实际含义确定对影响振动的关键参数。从得分情况看,喂料量、微粉比表、磨机进口压力、主排风机转速、循环风阀开度磨机进口温度的平均值比较低,排除这些得分偏低的特征参数。得分最高的几个参数,按照从高到低的顺序依次为:料层厚度、磨机压差、磨机出口温度、循环风阀开度。4)根据步骤2)和步骤3)中的分析,评估特征参数的筛选结果。四个得分较高的参数中,磨机压差、料层厚度、立磨出口温度三个参数都属于结果变量,参数的取值是在其他可控变量的综合影响下得到的结果。而循环风阀开度是调控变量不适合作为工况状态的判断指标。进一步地,所述的立磨健康状态聚类分析模块,基于确定的立磨健康状态评估的指标,结合实际生产经验和工况库中的数据分布,确定了四个稳定判断指标会导致运行异常的临界值,在多个临界值的限定范围内对预处理后的数据进行进一步筛选,求满足所有限制条件的数据,得到的筛选结果作为聚类的输入数据。聚类分析采用的是K-均值(k-means)来发现数据集中的K个工况簇。这里的K是用户指定的,算法的目的是找到数据集中的K个簇的质心,把数据集中的点分配给距离该点最近的质心,并将该点分配给该质心对应的类别。进一步地,所述的立磨稳定工况模式库建立模块,按照对聚类分群中数据状态的定义,完成对已有的运行工况记录的类别标注,把稳定工况类别标签设置为0,非稳定工况标签设置为1,并从中提取稳定工况,建立稳定模式工况库。进一步地,所述的立磨状态评估指标特征获取模块,以振动、料层厚度、磨机压差、磨机出口温度这4个状态评估指标的实时数据为基础,计算每个参数在取数窗口时间内的均值、方差和异常值出现次数,把得到的结果作为稳定工况判断的特征变量。进一步地,所述的立磨实时特征参数预测模块,采用时间序列算法对运行状态进行预测,并用得到的预测值辅助状态判断。需要预测的参数包括振动、料层厚度、磨机出口温度、磨机压差、异常值次数,对这五个参数分别训练时间序列模型。得到的模型可以检测一段序列是否是平稳序列,给出参数的数值预测,用预测值辅助状态识别。根据立磨工况的特点,由于环境等外部因素和其他参数对振动的联合影响,导致工况序列属于非平稳序列,采用ARIMA模型进行时间序列的建模。平稳序列:对与一个序列{X(t)},如果数值在某一有限范围内波动,序列有常数的均值和常数方差,并且延迟k期的序列变量的自协方差和自相关系数是相等的,则该序列是平稳序列。差分运算:假定两个序列的时间间隔为T,差分运算就是把相隔为k个T的序列的对应值做减法运算,k=1时,称为一阶差分运算。ARIMA模型的实质是在ARMA运算之前加上差分运算,然后使用ARMA进行建模,计算公式如下:xt=φ0+φ1xt-1+φ2xt-2+...+φpxt-p+εt-θ1εt-1-θ2εt-2-...-θqεt-q该模型认为在t时刻的变量x的值是前p期的x取值和前q期的干扰ε的多元线性函数。误差项是当前的随机干扰εt,本文档来自技高网
...
一种基于数据挖掘的立磨运行调控系统及方法

【技术保护点】
一种基于数据挖掘的立磨运行调控系统,其特征在于,该系统包括:数据预处理模块、立磨健康状态评估指标挖掘模块、立磨健康状态聚类分析模块、立磨稳定工况模式库建立模块、立磨状态评估指标特征获取模块、立磨实时特征参数预测模块、立磨运行智能调控模块;数据预处理模块,对立磨采集的数据进行异常值处理、空值处理、离散化处理和归一化处理;立磨健康状态评估指标挖掘模块,利用一种综合的特征筛选方法对工况数据进行挖掘分析,得到影响立磨稳定的关键参数,作为立磨健康状态评估的指标;立磨健康状态聚类分析模块,基于确定的立磨健康状态评估的指标,对工况状态进行聚类挖掘分析,得到的各个工况簇的特点,获得历史工况中的各个状态分布情况;立磨稳定工况库建立模块,根据聚类分析的挖掘结果,定义历史工况中的运行状态类别,对工况所属的状态进行类别标注和筛选,得到稳定模式工况库;立磨状态评估指标特征获取模块,分析立磨运行状态下的采集的实时数据的特点,确定进行实时状态判断的特征值;立磨实时特征参数预测模块,利用ARIMA算法对立磨健康状态特征获取模块中确定的特征值训练模型,对参数的变化趋势进行预测,用预测值辅助状态识别;立磨运行智能调控模块根据该时刻的状态指标的数值,并结合ARIMA模型给出的预测值,对立磨的运行状态进行判断,当判定该时刻的运行状态为异常时,从稳定工况模式库中读取工况记录,得到推荐的调控目标值,然后根据推荐的目标值对该时刻的可控参数进行调控。...

【技术特征摘要】
1.一种基于数据挖掘的立磨运行调控系统,其特征在于,该系统包括:数据预处理模块、立磨健康状态评估指标挖掘模块、立磨健康状态聚类分析模块、立磨稳定工况模式库建立模块、立磨状态评估指标特征获取模块、立磨实时特征参数预测模块、立磨运行智能调控模块;数据预处理模块,对立磨采集的数据进行异常值处理、空值处理、离散化处理和归一化处理;立磨健康状态评估指标挖掘模块,利用一种综合的特征筛选方法对工况数据进行挖掘分析,得到影响立磨稳定的关键参数,作为立磨健康状态评估的指标;立磨健康状态聚类分析模块,基于确定的立磨健康状态评估的指标,对工况状态进行聚类挖掘分析,得到的各个工况簇的特点,获得历史工况中的各个状态分布情况;立磨稳定工况库建立模块,根据聚类分析的挖掘结果,定义历史工况中的运行状态类别,对工况所属的状态进行类别标注和筛选,得到稳定模式工况库;立磨状态评估指标特征获取模块,分析立磨运行状态下的采集的实时数据的特点,确定进行实时状态判断的特征值;立磨实时特征参数预测模块,利用ARIMA算法对立磨健康状态特征获取模块中确定的特征值训练模型,对参数的变化趋势进行预测,用预测值辅助状态识别;立磨运行智能调控模块根据该时刻的状态指标的数值,并结合ARIMA模型给出的预测值,对立磨的运行状态进行判断,当判定该时刻的运行状态为异常时,从稳定工况模式库中读取工况记录,得到推荐的调控目标值,然后根据推荐的目标值对该时刻的可控参数进行调控。2.如权利要求1所述的系统,其特征在于,所述的数据预处理模块中,数据异常值处理、空值处理,通过数据筛选和数据清洗实现。数据异常值处理、空值处理,由特征简约和数据变换实现。3.如权利要求1所述的系统,其特征在于,所述的立磨健康状态评估指标挖掘模块中,一种综合的特征筛选方法由随机lasso、岭回归、随机森林、稳定性选择和递归特征消除这五种方法综合组成,对工况数据进行挖掘分析,得到影响立磨稳定的关键参数,确定振动、料层厚度、磨机压差、磨机出口温度4个参数共同作为立磨健康状态评估的指标。4.如权利要求1所述的系统,其特征在于,所述的综合的特征筛选方法通过求解输入变量和输出变量之间的关系,对每种算法的得分结果均利用最大最小值的规范化方法进行处理,把得分限制在了[0,1]之间,然后求每个参数特征的平均得分,把平均值作为特征重要性排序的依据,按照处理后的得分结果对特征的重要度进行评估,进行特征值选择。5.如权利要求1所述的系统,其特征在于,所述的立磨健康状态聚类分析模块,基于确定的立磨健康状态评估的指标,对工况状态进行k-means聚类挖掘分析,得到的各个工况簇的特点,获得历史工况中的各个状态分布情况,选取k=3,...

【专利技术属性】
技术研发人员:纪杨建代风万安平张真
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1