一种基于近红外光谱分析技术的植物蛋白饮料中主要成分含量快速检测的方法技术

技术编号:15821178 阅读:108 留言:0更新日期:2017-07-15 03:46
本发明专利技术公开了一种基于近红外光谱分析技术的植物蛋白饮料蛋白质、脂肪及可溶性固形物含量快速检测方法,本方法是通过在设定的建模条件下,采用近红外光谱分析技术并选择合适的化学计量学方法,分别建立具有代表性的植物蛋白饮料中蛋白质、脂肪及可溶性固形物含量的近红外定量预测模型;采用验证样品集对模型进行验证优化,最终以该近红外预测模型实现对未知待测植物蛋白饮料样品蛋白质、脂肪及可溶性固形物含量的测定。相比于现有蛋白质、脂肪及可溶性固形物测定的常规方法,本发明专利技术方法操作简单、快速、准确,本发明专利技术方法获得的预测模型实用性较强,能解决企业对植物蛋白饮料质量及稳定性及时掌控的迫切需求。

Rapid detection method of main component content in vegetable protein beverage based on near infrared spectrum analysis technique

The invention discloses a method based on near-infrared spectroscopy analysis technology of vegetable protein beverage protein, fat and soluble solids content of rapid detection methods, this method is based on modeling conditions by using near infrared spectral analysis technology and select the appropriate stoichiometric method, were used to set up the prediction model of near infrared quantitative protein fat and soluble solids content of representative vegetable protein beverage; the validation sample set to verify the optimization of the model, and ultimately to the near infrared prediction model of unknown determination of solids content in plant protein beverage samples of protein, fat and soluble test. Compared with the existing protein, fat and soluble solid matter by conventional methods, the method of the invention has the advantages of simple operation, rapid and accurate prediction model is obtained by the method of the invention is practical and can solve the urgent needs of enterprises timely control on the quality and stability of plant protein beverage.

【技术实现步骤摘要】
一种基于近红外光谱分析技术的植物蛋白饮料中主要成分含量快速检测的方法
本专利技术属于食品质量与安全快速检测
,具体涉及一种利用近红外光谱分析技术对植物蛋白饮料中蛋白质、脂肪及可溶性固形物含量的快速检测方法。
技术介绍
植物蛋白饮料,在当前市场中,由于其营养、保健、天然、口感优良等优点而备受消费者喜爱。蛋白质、脂肪及可溶性固形物作为植物蛋白饮料中的三大主要成分,直接影响着饮料的风味、营养及稳定性。因此,对植物蛋白饮料中的蛋白质、脂肪及可溶性固形物含量进行及时控制十分必要,对保证饮料品质起到重要的作用。目前植物蛋白饮料中蛋白质、脂肪及可溶性固形物的测定分别为凯氏定氮法、酸水解法及折光计法,但是,这些方法普遍存在检测过程耗时、操作较为复杂等缺陷,且对检测人员的技术水平要求较高,无法实现植物蛋白饮料中主要成分含量的大批量快速定量检测,无法及时对产品质量及稳定性进行控制,不适合企业用于样品的快速检测。近红外光谱(nearinfraredspectroscopy,NIR)技术是近年来迅速发展起来的快速无损检测技术,几乎可用于所有与含氢基团有关的样品物化性质分析,具有操作简单、样品无需前处理、易于实现快速分析的优势,已经在食品、药品、石油化工、农牧等领域广泛应用,市场前景好。但在国内至今为止尚未见有应用近红外光谱分析技术对植物蛋白饮料中成分进行快速检测的相关报道。
技术实现思路
本专利技术目的在于提供一种基于近红外光谱分析技术的植物蛋白饮料中蛋白质、脂肪及可溶性固形物含量的快速检测方法,该方法相比现有检测方法所存在的操作复杂、费力费时等缺陷,具有快速、方便等优点。本专利技术所提供的植物蛋白饮料中主要成分含量快速检测方法,包括如下步骤:1)收集不同种类、不同品牌的植物蛋白饮料样品,随机选取若干作为样品集,利用近红外光谱仪采集样品集的近红外光谱图;2)检测得到样品集植物蛋白饮料样品中蛋白质、脂肪及可溶性固形物含量的实测值;3)选取建模样品,按照2:1的比例,采取Kennard-Stone(K-S)法进行样本集划分,分为校正集和验证集,并将步骤1)中得到的校正集中植物蛋白饮料样品的近红外光谱数据分别与步骤2)中得到的蛋白质、脂肪及可溶性固形物含量的实测值相对应,通过化学计量学软件建立酿酒葡萄样品中酒石酸及苹果酸含量的定量校正模型,并用验证集样品对所建定量校正模型进行外部验证,最终得到植物蛋白饮料中主要成分含量近红外校正预测模型;4)取待测样品,按步骤1)中的光谱测量条件采集待测样品的近红外光谱数据,导入校正预测模型中,经模型运算,即可得到未知植物蛋白饮料样品中的蛋白质、脂肪及可溶性固形物含量。上述检测方法中,步骤1)中,所述收集的植物蛋白饮料样品数至少为800,优选为800~1200。所述采集样品集中植物蛋白饮料样品的近红外光谱图的方法如下:测量前将样品放置于室温下统一静置30min,采用透反射方式进行样品的光谱采集,每一份样品体积为25ml,样品测量温度为40摄氏度,样品倒入样品杯,放入透反射盖,并用透反射盖赶走气泡,近红外光透过样品后在透反射盖上发生漫反射,漫反射光又透过样品进入检测器中,扫描次数为32次,波长范围为4000-10000cm-1,透反射盖下样品厚度固定为0.3mm,每个样品重复装样采集2次光谱,光谱以吸光度log(1/R)形式存储。所述植物蛋白饮料样品涵盖不同产地、不同生产日期、不同型号规格的样品。所述近红外光谱仪为NIRMasterM54P傅里叶变换近红外光谱仪(瑞士步琪有限公司)。所述化学计量学软件是由瑞士步琪有限公司提供。上述检测方法中,步骤2)中,所述检测的方法分别为GB/T5009.5-2010《食品中蛋白质的测定》的凯氏定氮法、GB/T5009.6-2003《食品中脂肪的测定》的酸水解法以及GB/T12143-2008《饮料通用分析方法》的折光计法。上述检测方法中,步骤3)中,所述对所建立的近红外定量校正模型进行外部验证的步骤:将步骤1)得到的验证集植物蛋白饮料样品的近红外光谱导入所建立的定量校正模型中,得到验证集中样品蛋白质、脂肪及可溶性固形物含量的预测值,将其与步骤2)中所述验证集中植物蛋白饮料样品的蛋白质、脂肪及可溶性固形物含量的实测值相比,进行模型准确度的检验,若预测值(%)与实测值(%)差值的绝对值与实测值(%)之比在设定的范围内,则所述定量校正模型可用;反之,则需重复步骤3),优化建模条件直至所述定量校正模型可用。所述定量校正模型依次采用如下步骤而建立得到:a、光谱预处理方法:所述光谱预处理方法选自如下至少一种:多元散射校正(MSC)、Savitzky-Golay卷积平滑、Savitzky-Golay一阶导数、小波变换(WT)和NCL;b、样品集划分方法:所述样品集划分方法选自如下任意一种:随机法、Kennard-Stone(K-S)法、SPXY法;c、变量压缩方法:所述变量压缩方法选自如下任意一种:CARS法、无信息变量消除法、组合区间偏最小二乘法、遗传算法;d、化学计量学建模方法:所述化学计量学建模方法选自如下任意一种:偏最小二乘法(PLS)、主成份回归(PCR)、最小二乘支持向量机(LS-SVM)或人工神经网络法(ANN)。所述定量校正模型具体依次采用如下步骤而建立得到:a、光谱预处理方法:NCL;b、样品集划分方法:Kennard-Stone(K-S)法;c、变量压缩方法:组合区间偏最小二乘法、遗传算法;d、化学计量学建模方法:偏最小二乘法(PLS)。上述检测方法中,步骤3)中,所述变量压缩方法的实现步骤:将植物蛋白饮料4000-10000cm-1全光谱分为k个子区间(k=10~40,间隔5),在不同子区间数下,分别就不同组合数(1~4)进行组合区间偏最小二乘(SiPLS)计算,再以交互验证标准差RMSECV最小为标准将SiPLS筛选出的建模波段使用遗传算法进行计算,分别筛选出植物蛋白饮料的蛋白质、脂肪及可溶性固形物的最佳建模变量。上述检测方法中,步骤3)中,所述变量压缩方法中遗传算法的运行参数设置为:初始种群大小80,变异概率Pm=0.01,交叉概率Pc=0.5,最大因子数10,遗传迭代次数120次,以RMSECV值确定出最佳的建模变量。上述检测方法中,步骤3)中,所述最佳建模变量为:1)经SiPLS筛选出的植物蛋白饮料各指标建模波段分别为:蛋白质(4404~4800、5604~6000、6804~7200、9204~9600cm-1);脂肪(4244~4480、4724~4960、5684~5920、8804~9040cm-1);可溶性固形物(4000~4480、4964~5200、7604~7840cm-1);2)经遗传算法筛选出的植物蛋白饮料各指标最佳建模变量分别为:蛋白质(4404、4460、4500、4528、4552、4580、4596、4612、4624、4628、4672、4680、4700、4716、5608、5616、5620、5624、5640、5644、5676、5680、5688、5700、5708、5720、5732、5752、5768、5772、5780、5788、5792、5796、5800、5804、5808、5816、5820、本文档来自技高网...
一种基于近红外光谱分析技术的植物蛋白饮料中主要成分含量快速检测的方法

【技术保护点】
一种基于近红外光谱分析技术的植物蛋白饮料中主要成分含量快速检测的方法,包括下述步骤:1)收集不同种类、不同品牌的植物蛋白饮料样品,随机选取若干作为样品集,利用近红外光谱仪采集样品集的近红外光谱图;2)使用常规方法检测得到样品集植物蛋白饮料样品中蛋白质、脂肪及可溶性固形物含量的实测值;3)选取建模样品,按照2:1的比例,采取Kennard‑Stone(K‑S)法进行样本集划分,分为校正集和验证集,并将步骤1)中得到的校正集中植物蛋白饮料样品的近红外光谱数据分别与步骤2)中得到的蛋白质、脂肪及可溶性固形物含量的实测值相对应,通过变量压缩方法挑选最佳建模变量,并通过化学计量学建模方法建立植物蛋白饮料样品中蛋白质、脂肪及可溶性固形物含量的定量校正模型,并用验证集样品对所建定量校正模型进行外部验证,最终得到植物蛋白饮料中主要成分含量近红外校正预测模型;4)取待测样品,按步骤1)中的光谱测量条件采集待测样品的近红外光谱数据,导入校正预测模型中,经模型运算,即可得到未知植物蛋白饮料样品中的蛋白质、脂肪及可溶性固形物含量。

【技术特征摘要】
1.一种基于近红外光谱分析技术的植物蛋白饮料中主要成分含量快速检测的方法,包括下述步骤:1)收集不同种类、不同品牌的植物蛋白饮料样品,随机选取若干作为样品集,利用近红外光谱仪采集样品集的近红外光谱图;2)使用常规方法检测得到样品集植物蛋白饮料样品中蛋白质、脂肪及可溶性固形物含量的实测值;3)选取建模样品,按照2:1的比例,采取Kennard-Stone(K-S)法进行样本集划分,分为校正集和验证集,并将步骤1)中得到的校正集中植物蛋白饮料样品的近红外光谱数据分别与步骤2)中得到的蛋白质、脂肪及可溶性固形物含量的实测值相对应,通过变量压缩方法挑选最佳建模变量,并通过化学计量学建模方法建立植物蛋白饮料样品中蛋白质、脂肪及可溶性固形物含量的定量校正模型,并用验证集样品对所建定量校正模型进行外部验证,最终得到植物蛋白饮料中主要成分含量近红外校正预测模型;4)取待测样品,按步骤1)中的光谱测量条件采集待测样品的近红外光谱数据,导入校正预测模型中,经模型运算,即可得到未知植物蛋白饮料样品中的蛋白质、脂肪及可溶性固形物含量。2.根据权利要求1所述的检测方法,其特征在于:步骤1)中,所述采集样品集中植物蛋白饮料样品的近红外光谱图的方法如下:测量前将样品放置于室温下统一静置30min,采用透反射方式进行样品的光谱采集,每一份样品体积为25ml,样品测量温度为40摄氏度,样品倒入样品杯,放入透反射盖,并用透反射盖赶走气泡,近红外光透过样品后在透反射盖上发生漫反射,漫反射光又透过样品进入检测器中,扫描次数为32次,波长范围为4000-10000cm-1;透反射盖下样品厚度固定为0.3mm,每个样品重复装样采集2次光谱,光谱以吸光度log(1/R)形式存储;所述植物蛋白饮料样品涵盖不同产地、不同生产日期、不同型号规格的样品。3.根据权利要求1-2所述的检测方法,其特征在于:步骤2)中,所述检测的方法分别为GB/T5009.5-2010《食品中蛋白质的测定》的凯氏定氮法、GB/T5009.6-2003《食品中脂肪的测定》的酸水解法以及GB/T12143-2008《饮料通用分析方法》的折光计法。4.根据权利要求1-3中任一项所述的检测方法,其特征在于:步骤3)中,所述定量校正模型依次采用如下步骤而建立得到:a、光谱预处理方法:所述光谱预处理方法选自如下至少一种:多元散射校正、Savitzky-Golay卷积平滑、Savitzky-Golay一阶导数、小波变换(WT)和NCL;b、样品集划分方法:所述样品集划分方法选自如下任意一种:随机法、Kennard-Stone(K-S)法、SPXY法;c、变量压缩方法:所述变量压缩方法选自如下任意一或两种:CARS法、无信息变量消除法、组合区间偏最小二乘法、遗传算法;d、化学计量学建模方法:所述化学计量学建模方法选自如下任意一种:偏最小二乘法、主成份回归、最小二乘支持向量机或人工神经网络法。5.根据权利要求4所述的检测方法,其特征在于:步骤3)中,所述定量校正模型依次采用如下步骤而建立得到:a、光谱预处理方法:NCL;b、样品集划分方法:Kennard-Stone(K-S)法;c、变量压缩方法:组合区间偏最小二乘法、遗传算法;d、化学计量学建模方法:偏最小二乘法。6.根据权利要求5所述的检测方法,其特征在于:步骤3)中,所述变量压缩方法通过如下步骤实现:将植物蛋白饮料4000-10000cm-1全光谱分为k个子区间(k=10~40,间隔5),在不同子区间数下,分别就不同组合数(1~4)进行组合区间偏最小二乘(SiPLS)计算,再以交互验证标准差RMSECV最小为标...

【专利技术属性】
技术研发人员:王健李子文李宗朋夏君霞王俊转尹建军宋全厚
申请(专利权)人:中国食品发酵工业研究院河北养元智汇饮品股份有限公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1