The invention provides a method of optimal sensor placement for mine global accurate windmeasurement include: the establishment of mine ventilation system network topology diagram; global ventilation resistance measurement, the initial state of ventilation system; get the sensitivity matrix; according to the stability and the importance of air resistance in accordance with the division of air duct; air will be measured, sensitive and test is divided according to the classification results and the air duct; the sensitivity matrix of ventilation network is simplified, the simplified network using air volume balance law, to find the optimal layout scheme of wind sensor. Advantages: (1) the number of installed wind speed sensor and less common, can obtain more accurate real-time volume of each channel, provides a feasible solution for the ventilation system of online analysis of state identification and diagnosis. (2) for the wind tunnel with lower wind speed, the invention provides a method for installing a long distance low resistance wind speed sensor with low wind speed, which improves the measuring range and sensitivity of the wind speed sensor.
【技术实现步骤摘要】
一种矿井全局精确测风的传感器优化布置方法
本专利技术属于矿井通风自动化
,具体涉及一种矿井全局精确测风的传感器优化布置方法。
技术介绍
矿井通风是保障矿井安全和良好生产环境的最主要技术手段之一。在矿井生产过程中,必须源源不断地将地面新鲜空气输送到井下各作业地点,以供给人员呼吸,并稀释和排除井下各种有毒、有害的气体和矿尘,创造良好的矿内工作环境,保障井下作业人员的身体健康和劳动安全。矿井通风的主要任务是:根据井下各个地点的温度、湿度、有害气体和矿尘浓度实时保证供风质量,满足正常时期和灾变时期各用风地点按时按需供风。但是,一般大中矿井的通风系统通常是由几百条,甚至上千条风道组成的非线性流体网络;因此,无论是人工控风还是自动控风,无论正常时期还是灾变时期,如果需要精确掌握供风质量和控风效果,以及,如果需要精确掌握瓦斯涌出量预计、粉煤尘排量测算、漏风诊断、火源温度和热力风压分析、风阻变化等状态识别,都需要实时监测和计算每个用风地点和每条风道的精确供风量。随着地面大气压和地温的变化、巷道的变形、掘进面和回采面的推进、通风设施的状态改变和各种车辆和设备的扰动,每条风道的风量都是随时变化的。另外,由于各条风道的条件和环境不同,有些风道是无法安装风速传感器的,例如,立井井筒、漏风通道等。既使安装风速传感器,限于现有的风速传感器灵敏度较低、量程太窄,一般的风速传感器启动风速不低于0.2m/s,量程为0.2m/s-5m/s,对于较低的风速无法精确监测。事实上,由于行人、运输装备的影响,风速传感器只能安装在靠近巷道顶部和两帮的位置,这些位置风速都比较低,因此给风速的精确监 ...
【技术保护点】
一种矿井全局精确测风的传感器优化布置方法,其特征在于,包括以下步骤:步骤1,建立完整的矿井通风系统网络拓扑结构图并编号,编号方法为:将进风井口和回风井口这两个节点各编制为一个编号;对于其他节点,按照风流流动方向,从始点到终点对各节点按从小到大顺序进行编号;另外,还编制各风道的风道号;设矿井通风系统共有m个节点和n条风道,m和n均为自然数;由此得到编号后的矿井通风系统网络拓扑结构图G=(V,E),其中,V={v
【技术特征摘要】
1.一种矿井全局精确测风的传感器优化布置方法,其特征在于,包括以下步骤:步骤1,建立完整的矿井通风系统网络拓扑结构图并编号,编号方法为:将进风井口和回风井口这两个节点各编制为一个编号;对于其他节点,按照风流流动方向,从始点到终点对各节点按从小到大顺序进行编号;另外,还编制各风道的风道号;设矿井通风系统共有m个节点和n条风道,m和n均为自然数;由此得到编号后的矿井通风系统网络拓扑结构图G=(V,E),其中,V={v1,v2,…,vm},V为节点集合,v1,v2,...,vm分别代表第1节点、第2节点...第m节点;E={e1,e2,…,en},E为风道集合;e1,e2,...,en分别代表第1风道、第2风道...第n风道;步骤2,进行全局通风阻力测定,并通过矿井通风平差计算,获得准确的满足通风平衡定律的通风系统初始状态T0=(R0,A0,B0,C0,Q0,H0,Hz0),其中,T0代表通风系统初始状态;R0、A0、B0、C0、Q0、H0和Hz0分别为各风道的风网的风阻向量、风机特性曲线二次项系数向量、风机特性曲线一次项系数向量、风机特性曲线常数项向量、风网的风量向量、风网的阻力向量和风网的自然风压向量;步骤3,根据初始状态T0=(R0,A0,B0,C0,Q0,H0,Hz0),计算得到灵敏度矩阵SL:其中,sij为通风系统在初始状态T0时,第i风道的风量Qi关于第j风道的风阻Rj的变化率,即步骤4,按照风道风阻的稳定性和重要性,将风道划分为以下四类,分别为:I类风道、II类风道、III类风道和IV类风道;其中,I类风道指风阻稳定且可直接精确测量风阻的风道;II类风道指风阻呈多态性,在不同时段取不同风阻值的风道;III类风道指需风量固定的风道;IV类风道指:除去I类风道、II类风道和III类风道外的其它风道;I类风道、II类风道、III类风道和IV类风道分别对应风道集EI、EII、EIII和EIV;按照风量的必测性、灵敏性和可测性,将风道划分为以下五类,分别为:A类风道、B类风道、C类风道、D类风道和E类风道;其中,A类风道指:按照相关矿山安全规定必须监测风量的风道;B类风道指:II类风道风阻变化引起风量敏感变化的风道;C类风道指:风量不可直接测量的风道;D类风道指:与I类风道相连的非I类风道;E类风道指:除去A类风道、B类风道、C类风道和D类风道外的其它风道;A类风道、B类风道、C类风道、D类风道和E类风道分别对应风道集EA、EB、EC、ED和EE;步骤5,在步骤1得到的矿井通风系统网络拓扑结构图G=(V,E)中,查找出I类风道组成的各个连通片,把每一个连通片简化成一个虚拟节点,也将每一个进回风井口简化成一个井口节点,由此得到简化后的通风系统;简化后的通风系统构成一个新的通风网络G1=(V1,E1);其中,V1为新的通风网络的节点集合,E1为新的通风网络的风道集合;步骤6,对于新的通风网络G1=(V1,E1)中的风道,按照D类风道、C类风道、II类风道、IV类风道、B类风道、III类风道、A类风道和EE-EI类风道的顺序进行排序,并去掉排序在后出现的重复风道,共得到p个风道,按顺序依次记为:风道es1、风道es2…风道esp;由此得到序列S:{S}={es1,es2,…,esp}步骤7,对于新的通风网络G1=(V1,E1),按照序列{S}中的风道顺序,用加边法求出G1=(V1,E...
【专利技术属性】
技术研发人员:卢新明,尹红,
申请(专利权)人:山东蓝光软件有限公司,
类型:发明
国别省市:山东,37
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。