当前位置: 首页 > 专利查询>湘潭大学专利>正文

一种配电网系统电能质量扰动定位与识别方法技术方案

技术编号:15798812 阅读:254 留言:0更新日期:2017-07-11 13:03
本发明专利技术公开了一种基于提升小波和改进BP神经网络的电能质量扰动定位与识别方法。它包括以下步骤:用Euclidean分解算法得到db4小波提升方案;对扰动信号进行提升小波分解;结合模极大值对扰动突变点峰值进行定位检测;利用自适应学习率和增加动量项相结合的方法对BP神经网络改进并进行扰动识别。本发明专利技术能更好地获取扰动时刻信息,定位快速且精度高,能有效地克服传统BP神经网络易陷入局部极小点和收敛速度慢的缺点,对配电网系统电能质量扰动识别率高。

Power quality disturbance location and identification method for distribution network system

The invention discloses a power quality disturbance location and recognition method based on Lifting Wavelet and improved BP neural network. It includes the following steps: Euclidean decomposition algorithm of DB4 wavelet lifting scheme; the disturbance signal lifting wavelet decomposition; combined modulus maxima detection of perturbation mutation peak; the adaptive learning rate and the improved BP neural network and disturbance identification method to increase the momentum of combining. The invention can obtain better disturbance moment information, positioning fast and high accuracy, can effectively overcome the shortcomings of traditional BP neural network is easy to fall into local minima and slow convergence, the distribution system of power quality disturbance and high recognition rate.

【技术实现步骤摘要】
一种配电网系统电能质量扰动定位与识别方法
本专利技术涉及一种电能质量扰动定位与识别方法,特别涉及一种基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别方法。
技术介绍
近年来,电力电子设备的广泛应用使得配电网系统中电能质量扰动问题日益突出。因此,如何提高电能质量成为目前配电网系统等相关领域的热点课题。配电网电能质量扰动的研究和治理受到了越来越多的重视,而快速、准确地对配电网电能质量扰动定位与识别是其中的重要环节也是评价和改善电能质量的重要措施。国内外对配电网系统电能质量扰动定位与识别已展开广泛而深入的研究和探讨,产生了许多方法,如短时傅立叶变换,S变换,小波变换和广义S变换等技术,但都存在各自的不足。短时傅立叶变换由于其时间窗长度和形状相对固定,不能同时体现高频及低频的特征,存在局限性;用S变换法对电能质量扰动进行检测与分类,检测定位精度较高,分类相对准确,但S变换运算量较大,实时性难保证;小波变换能较好地定位与识别电能质量扰动,但采用的是传统小波,运算速度较慢,定位耗时较长;用广义S变换法来定位与识别电能质量扰动,定位精度和扰动识别率较高,但定位方法复杂,计算量大。
技术实现思路
为了解决配电网系统电能质量扰动定位与识别存在的技术问题,本专利技术是提供一种速度更快、实时性更强且定位精度高的配电网系统电能质量扰动定位与识别的方法。本专利技术解决上述技术问题的技术方案是:用Euclidean分解算法得到db4小波提升方案;对扰动信号进行提升小波分解;结合模极大值对扰动突变点峰值进行定位检测;利用自适应学习率和增加动量项相结合的方法对BP神经网络改进并进行扰动识别。本专利技术的技术效果在于:本专利技术通过对配电网系统电能质量扰动信号的多分辨率db4提升小波分解,得到其高、低频分解系数序列,然后利用模极大值来定位分析电能质量扰动起止时刻,提高了配电网系统电能质量扰动定位精度和速度,实时性更强,再通过自适应学习率和增加动量项相结合的方法对BP神经网络改进,降低了陷入局部极小点的概率,提高了网络收敛速度。附图说明图1是本专利技术的流程图图2是本专利技术中提升小波的前、逆向环节图3是本专利技术中提升小波的分解和重构模型图4是本专利技术中使用的BP神经网络结构图5是本专利技术中传统BP学习算法改进流程。具体实施方式下面结合附图,对本专利技术作进一步的详细说明。本专利技术对配电网系统电能质量扰动定位与识别的具体过程如图1所示。如图2所示,小波的提升过程由分解、预测和更新三个步骤组成:步骤一:分解,将原始信号x(n)(aj(n))按奇偶性分解成偶数序列xe[n]和奇数序列xo[n]两个较小子集。步骤二:预测,根据奇偶序列相关性,利用偶数序列xe[n]的预测值P(xe[n])来预测奇数序列xo[n],用奇数序列的实际值与预测值做差得到小波系数dj-1[n]。dj-1[n]=xo[n]-P[xe(n)](1)步骤三:更新,用步骤二中得到的小波系数dj-1[n]对偶数序列xe[n]更新,得到尺度系数aj-1[n]。aj-1[n]=xe[n]+U(dj-1[n])(2)db4小波具有良好的消失矩、正则度、对称性和紧支撑性。因此,选db4小波采用Euclidean分解算法进行提升,而实现小波提升的关键在于分解小波滤波器的多相矩阵及其逆矩阵得到提升因子s(z)、t(z)。具体Euclidean分解实现过程如下:记小波滤波器的多相矩阵为Q(z),即:对ue(z)和uo(z)进行Euclidean分解可得:式(4)中n∈2k+1,k为整数。令m=(n+1)/2,若1≤i≤m-1时,则ti(z)=q2i-1(z),si(z)=q2i(z);若i=m,ti(z)=qn(z),si(z)=k2s(z)。因此有:根据上述方法对db4小波进行提升,可得db4小波提升方案,即:根据和Qts(z)构造出的db4提升小波分解模型及其重构模型如图3所示。设θ(t)为一低通平滑函数且满足和取θ(t)为高斯函数即设θ(t)一阶可导,其导数为则θ(t)的一阶导数Ψ′(t)满足小波允许性条件所以Ψ′(t)可以用做小波母函数。若记则θs(t)表示θ(t)在尺度因子s下的伸缩,以Ψ′(t)为小波母函数,信号x(t)在尺度为s,位移为t处的小波变换为由式(8)可知,Ws′x(t)是信号x(t)在尺度s下由θ(t)平滑后再取一阶导数。信号x(t)的小波变换Ws′x(t)模的局部极大值点反映了信号x(t)的扰动突变点,因此可以用小波变换模极大值点来定位扰动信号突变点。本专利技术的具体扰动信号定位步骤如下:步骤一:绘制原始信号并采样,采样频率fs为10kHz,即每个周期采样200个点;步骤二:小波分解,分别对扰动信号进行db4提升小波和db4小波4层分解,得到第一层高频系数d1t和d1;步骤三:判断突变点,求d1t、d1模极大值点及其对应位置,d1t、d1模极大值所在点位置即为电能质量扰动信号突变点;步骤四:定位起止时刻,d1t、d1模极大所对应的时刻即为电能质量扰动发生或结束时刻。本专利技术采用研究最为成熟、应用最为广泛的BP神经网络来设计配电网系统电能质量扰动信号识别模型,其结构如图4所示。BP神经网络是一种由输入层、中间层和输出层组成的按误差逆向传播算法训练的多层前馈神经网络。输入层:前面对扰动信号进行了4层db4提升小波分解,得到5层分解系数序列,共5种扰动,分别是电压骤升、电压中断、电压骤降、脉冲瞬变和谐波扰动,输入变量共25个。输出层:由于电能质量扰动识别模型是对电压骤升、电压中断、电压骤降、脉冲瞬变和谐波扰动进行识别。因此,输出为其对应的识别率,共5个。中间层:中间层神经元的个数一般可以根据Kolmogorov定理来确定。若输入层变量个数为n,则中间层神经元个数为2n+1,共51个。针对传统BP神经网络存在易陷入局部极小点、收敛速度慢等问题,本专利技术将增加动量项和自适应学习率的BP学习算法相结合来改进传统BP神经网络,以降低陷入局部极小点的概率,提高收敛速度和识别精度。传统BP学习算法具体实现步骤如下:步骤一:连接权值w初始化,设定当前迭代t;步骤二:输入训练样本P,设定当前输入p,计算各层输入误差和反向传播误差;步骤三:判断P与p的大小。若p≥P,跳转到步骤四;若p<P,则p=p+1,跳转到步骤二;步骤四:根据各层连接权值调整公式调整连接权值;步骤五:根据步骤四得到的新连接权值,计算各层输出误差、反向传播误差和网络总误差E(t);步骤六:判断网络总误差E(t)和系统允许误差ε、当前迭代t和最大训练次数T的大小,若E(t)<ε或者t>T,则结束训练;反之,则跳转到步骤二进行新一轮训练。自适应学习率的BP学习算法根据更新后的连接权值是否降低了网络总误差E(t)来自动调整学习率参数,网络收敛速度大幅提高。学习率η(t)的调整公式如下:增加动量项的BP学习算法是通过当前误差曲面的负梯度变化量和前一次迭代修正所采纳的权值变化来获取权值的改变量,如公式(10)。通过动量项的作用可有效提高收敛速度,并有助于网络从误差曲面的极小值中跳出。w(t)=ΔwBP(t)+δ[w(t-1)-w(t-2)](10)式中:w(t)为第t次迭代误差;ΔwBP(t)为传统BP学习算法第t次迭代的权值改变量;动量因子δ通常取本文档来自技高网...
一种配电网系统电能质量扰动定位与识别方法

【技术保护点】
一种基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别方法,包括以下步骤:用Euclidean分解算法得到db4小波提升方案;对扰动信号进行提升小波分解;结合模极大值对扰动突变点峰值进行定位检测;利用自适应学习率和增加动量项相结合的方法对BP神经网络改进并进行扰动识别。

【技术特征摘要】
1.一种基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别方法,包括以下步骤:用Euclidean分解算法得到db4小波提升方案;对扰动信号进行提升小波分解;结合模极大值对扰动突变点峰值进行定位检测;利用自适应学习率和增加动量项相结合的方法对BP神经网络改进并进行扰动识别。2.根据权利要求1所述的基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别方法,所述用Euclidean分解算法得到db4小波提升方案的步骤为:步骤一:分解,将原始信号x(n)(aj(n))按奇偶性分解成偶数序列xe[n]和奇数序列xo[n]两个较小子集;步骤二:预测,根据奇偶序列相关性,利用偶数序列xe[n]的预测值P(xe[n])来预测奇数序列xo[n],用奇数序列的实际值与预测值做差得到小波系数dj-1[n],公式为dj-1[n]=xo[n]-P[xe(n)];步骤三:更新,用步骤二中得到的小波系数dj-1[n]对偶数序列xe[n]更新,得到尺度系数aj-1[n],公式为aj-1[n]=xe[n]+U(dj-1[n])。3.根据权利要求1所述的基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别方法,所述结合模极大值对扰动突变点峰值进行定位检测的过程为:设θ(t)为一低通平滑函数...

【专利技术属性】
技术研发人员:易灵芝桂庆忠李青平
申请(专利权)人:湘潭大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1