Fiber reinforced ceramic matrix composite forming method based on 3D printing technology. 3D printing and forming of ceramic slurry were realized by using 3D printing technology and fiber reinforced composite technology. Firstly, the ceramic slurry containing catalyst, resin, monomer, crosslinking agent and a certain amount of initiator are prepared before the printing process, and then they are respectively supplied to the main and secondary two printing heads, and the ultraviolet light source is opened. When printing, the print head movement by the section data of ceramic slurry and fiber extrusion, at the same time, from the main printing head from the print head from the initiator side, covering the surface of ceramic slurry and ceramic slurry under UV irradiation and coagulation initiated under the dual role of forming agent, printing by the ceramic body then, the ceramic parts obtained by degreasing and sintering. With this method, ceramic matrix composite parts with good toughness, high strength and high precision can be obtained, and the rapid manufacture of fiber reinforced ceramic matrix composite parts with complex structure can be realized.
【技术实现步骤摘要】
一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法及装置
本专利技术属于3D打印技术和陶瓷烧结
,具体涉及一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法及装置。
技术介绍
3D打印技术是20世纪80年代后期发展起来的一项先进制造技术,可以直接根据产品设计数据,快速制造出新产品的样件、模具或模型,大大缩短产品加工周期,降低了研制的成本,对促进企业产品创新、提高产品竞争力有积极的推动作用。现代陶瓷由于其优越的光、电、热、磁、力学性能以及耐高温、抗腐蚀、耐辐射、高强度、高模量、高硬度、密度小、热膨胀系数小等特性而得到广泛应用。目前,陶瓷材料的直接成型已经成为快速成型技术的研究热点和重要发展方向之一。现有制备纤维增强陶瓷基复合材料的方法有化学气相沉积法、先驱体转化法、熔融金属直接氧化法。但上述方法只能制成二维零件或是必须制造纤维预制体。纤维坯体的制备往往比较困难。目前较为先进的树脂基长纤维增强复合材料零件制造的方式多采用复合材料纤维铺放技术,即按零件结构所确定的铺层方向和铺层厚度要求,采用多自由度的铺放头将多组纤维预浸纱束或窄带自动铺放在模具表面。所以,采用纤维预制体进行纤维增强陶瓷复合材料的制造工艺存在纤维敷设困难、成形方法单一、不能精确成形,且需要预先处理完成的纤维预浸料以及模具成本极高的等问题,无法实现复杂结构陶瓷复合材料零件的制备。在已有的技术中,连续纤维增强复合材料3D打印技术可以很好的弥补上述不足,该方法将增强纤维和加热熔融的热塑性树脂混合成的复合丝材打印成形,打印过程可以精确地控制增强纤维在复合材料零件中纤维的取向,能够实现具有特定机械 ...
【技术保护点】
一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,包括以下步骤:步骤一,在计算机上设计3D模型并转换成分层路径文件导入3D打印机;步骤二,制备假塑性陶瓷浆料,并供给到浆料入口B;步骤三,制备引发剂;步骤四,打开紫外光光源;步骤五,连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;步骤六,当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;步骤七,主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;步骤八,引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;步骤九,当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;步骤十,重复步骤五至步骤九,直至零件完成;步骤十一,将打印完成的零件置于紫外光下照射2~3h,使其完全固化;步骤十二,对固化后的零件进行脱脂和高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
【技术特征摘要】
1.一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,包括以下步骤:步骤一,在计算机上设计3D模型并转换成分层路径文件导入3D打印机;步骤二,制备假塑性陶瓷浆料,并供给到浆料入口B;步骤三,制备引发剂;步骤四,打开紫外光光源;步骤五,连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;步骤六,当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;步骤七,主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;步骤八,引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;步骤九,当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;步骤十,重复步骤五至步骤九,直至零件完成;步骤十一,将打印完成的零件置于紫外光下照射2~3h,使其完全固化;步骤十二,对固化后的零件进行脱脂和高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。2.根据权利要求1所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述步骤二中,陶瓷浆料的制备方法如下:第一步,将质量比为24:1:7:(40~60)的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为40~60%的树脂基预混液;第二步,按待打印的零件要求配制陶瓷粉料;第三步,将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为60~75%的催化剂;第四步,将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为1~5Pa.s的陶瓷浆料;第五步,加入质量分数0~2%作为增稠剂的黄原胶,得到陶瓷浆料。3.根据权利要求2所述的一种...
【专利技术属性】
技术研发人员:鲁中良,夏园林,曹继伟,卢秉恒,李涤尘,
申请(专利权)人:西安交通大学,
类型:发明
国别省市:陕西,61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。