The invention discloses a method for judging the sleep abnormality of an infrared image with low resolution, belonging to the technical field of artificial intelligence. The invention uses artificial intelligence to sleep in the low resolution image passive far infrared anomalies in the performance of the judgment, the low resolution will first have marked the category of passive far infrared image preprocessing and feature are generated for the training of the classifier classification system, feature selection and extraction method, the suitable method; low resolution and treat intelligent decision are generated for the passive far infrared image preprocessing and feature of use, choose a good feature selection and extraction method and trained classification system to classify the low resolution to be passive intelligent judgment far infrared image of the abnormal output. The judgment method of sleep abnormalities in the low resolution of the present invention is the passive far infrared image, with guaranteed false alarm rate under the condition of sleep abnormalities in low resolution of different sleeping individual passive far infrared image to judge high robustness, lower computational complexity.
【技术实现步骤摘要】
一种低分辨率红外图像睡眠异常情况判断方法
本专利技术涉及图像处理和人工智能
,具体涉及一种低分辨率红外图像睡眠异常情况判断方法。
技术介绍
目前,伴随着图像处理和采集技术的日益发展与成熟,人们日常生活中涌现了大量人工智能在图像处理方面的应用。被动远红外具有在黑夜可清晰成像、零辐射、非接触、隐私性好的特点,得到了广泛应用。但是远红外由于其采集技术成本高,所以针对普通家庭使用的低成本采集设备的分辨率很低。如何使用低分辨率被动远红外图像进行智能异常情况判决都有重要的意义,一方面,可以使用该技术形成高性价比、在黑夜可清晰成像、零辐射、非接触、隐私性好的异常情况产品;另一方面,也可以为较高分辨率的远红外图像提供技术参考。异常情况判决最简单的就是人工判决。因此,人工判决在视频质量评估方法研究中往往是作为标准。然而实际应用中这种方法成本太高,可实施性太低。基于低分辨率被动远红外图像的睡眠异常情况判断方法研究的目的就是设计出相应系统来进行异常情况判决,从而,使得系统对异常情况判决和人工判决尽量一致。经典图像智能判决方法通常包括三大主要步骤:特征生成,特征选择与提取,分类器训练。特征生成指的是从观测图像中获得有意义的特征信号;特征选择和提取是指对特征信号进行筛选和变换,生成对判决有意义而且分布较好的特征;分类器训练是指通过使用人工标记的类别进行训练或者通过特征数据本身的性质等方式设计出能与人工判决尽量一致的模型。虽然现在有各种特征生成、特征选择与提取、分类器训练方法,但是还没有针对低分辨率被动远红外图像的智能判决方法,更不要说针对低分辨率被动远红外图像的睡眠异常情况的 ...
【技术保护点】
一种低分辨率红外图像睡眠异常情况判断方法,其特征在于,包括训练过程和检测过程:训练过程:步骤1:人工对N个分辨率为m×n的睡眠被动远红外图像进行类别标记,将已标记好类别的N个睡眠被动远红外图像输入图像库,并对输入图像库的N个图像进行预处理;步骤2:对步骤1中预处理后的所有N个图像中的每个图像进行区域划分,对划分区域后的每个图像进行特征统计,每个图像的特征为M个。步骤3:对步骤2中的所有N个图像的M个特征进行特征选择和提取,每个图像变换后得到P个特征;将步骤1中输入图像库中已经标记好类别的图像分成两部分,其中用来训练的图像N1个,N1个图像中包括有步骤1中标记的所有类别的图像;用来评估分类器性能的图像N2个,N2个图像中包括有步骤1中标记的所有类别的图像。步骤4:对N1个图像中每个图像变换后的P个特征,使用分类器方法进行正常和异常情况的分类器训练,得到分类器参数C
【技术特征摘要】
1.一种低分辨率红外图像睡眠异常情况判断方法,其特征在于,包括训练过程和检测过程:训练过程:步骤1:人工对N个分辨率为m×n的睡眠被动远红外图像进行类别标记,将已标记好类别的N个睡眠被动远红外图像输入图像库,并对输入图像库的N个图像进行预处理;步骤2:对步骤1中预处理后的所有N个图像中的每个图像进行区域划分,对划分区域后的每个图像进行特征统计,每个图像的特征为M个。步骤3:对步骤2中的所有N个图像的M个特征进行特征选择和提取,每个图像变换后得到P个特征;将步骤1中输入图像库中已经标记好类别的图像分成两部分,其中用来训练的图像N1个,N1个图像中包括有步骤1中标记的所有类别的图像;用来评估分类器性能的图像N2个,N2个图像中包括有步骤1中标记的所有类别的图像。步骤4:对N1个图像中每个图像变换后的P个特征,使用分类器方法进行正常和异常情况的分类器训练,得到分类器参数C1..Cj;步骤5:使用N2个图像对步骤4训练好的分类器进行分类器评估,得到分类器的虚警率和准...
【专利技术属性】
技术研发人员:王帅,段昶,罗钦文,
申请(专利权)人:成都智锗科技有限公司,
类型:发明
国别省市:四川,51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。