一种基于图像的路径识别方法及系统技术方案

技术编号:15747337 阅读:108 留言:0更新日期:2017-07-03 04:35
本发明专利技术公开了一种基于图像的路径识别方法及系统,方法包括步骤:S1,获取路面的灰度图像;S2,对灰度图像逐行计算像素的质心位置,以各行质心位置作为道路中心的第一次定位结果;S3,根据第一次定位结果计算质心两侧梯度最大值,获得道路边界及十字路口位置;S4,如果此行是十字路口,则以第一次定位结果作为道路中心的第二次定位结果;如果不是十字路口,则计算道路边界内的像素的质心,以此质心位置作为道路中心的第二次定位结果;S5,对第二次所获得的道路中心进行滤波,获得最终的道路中心线。本发明专利技术采用质心法计算道路中心位置,有效克服图像噪声的影响;二次质心定位,能够提高道路中心的定位精度。

Method and system for identifying path based on image

The invention discloses a system and path identification method based on image method comprises the steps of: S1, gray image obtained on the road; S2, calculate the pixel centroid position of the gray image to each centroid position as a progressive, first positioning results in the centre of the road; S3, according to the first positioning results on both sides of the gradient centroid the maximum gain of road boundary and crossroads location; S4, if the trip is a crossroads, in the first second times as a result of positioning positioning results in the centre of the road; if not, in the crossroads, calculate the centroid pixel edge of the road, the centroid position as the second position results in the centre of the road; S5, to filter second time for the center of the road, to get the final road center line. The method uses the center of mass method to calculate the central position of the road, effectively overcomes the influence of the image noise; and the two centroid positioning can improve the positioning accuracy of the road center.

【技术实现步骤摘要】
一种基于图像的路径识别方法及系统
本专利技术属于模式识别
,具体涉及一种基于图像的路径设别方法,还涉及一种基于图像的路径识别系统。
技术介绍
近几年来,无人自动驾驶技术引起了汽车行业的广泛关注。在无人自动驾驶技术中,道路的自动识别是一个至关重要的环节。在基于图像的路径识别技术中,由于需要对大量的图像信息进行计算和分析,因此,道路快速而有效的识别对于自动驾驶有着重要的意义。
技术实现思路
本专利技术的目的在于克服现有技术中的不足,提供了一种基于图像的路径识别方法及系统,能够采用简单的计算方法,快速而有效地识别道路中心位置。为解决上述技术问题,本专利技术提供了一种基于图像的路径识别方法,其特征是,包括如下步骤:步骤S1,获取路面的灰度图像;步骤S2,对灰度图像逐行计算像素的质心位置,以各行质心位置作为道路中心的第一次定位结果;步骤S3,根据第一次定位结果计算质心两侧梯度最大值,获得道路边界及十字路口位置;步骤S4,逐行判断:如果此行是十字路口,则以第一次定位结果作为道路中心的第二次定位结果;如果不是十字路口,则计算道路边界内的像素的质心,以此质心位置作为道路中心的第二次定位结果;步骤S5,对第二次所获得的道路中心进行滤波,获得最终的道路中心线。进一步的,在步骤S2中计算各行像素质心位置的过程为:设第i行、j列的图像像素灰度值为f(i,j),则第i行的质心所在的列记为y1(i),质心计算公式如下:式中,N为像素的最大列宽。进一步的,在步骤S3中,在道路中心y1(i)的两侧,分别寻找梯度最大值,取其所在列为道路边界;如果所在列位于图像边界,则该行为十字路口。进一步的,采用如下不完全微分算法计算第i行各列的梯度df(i,j):df(i,j)=K[f(i,j)-g(i,j)]式中,g(i,j)=g(i,j-1)+df(i,j-1),K为滤波系数,0<j<N。进一步的,在步骤S5中,滤波计算公式:y3(i)=αy3(i-1)+(1-α)y2(i)式中,α取值范围为0.5~0.9;y2(i)为第二次定位结果,y3(i)为最终道路中心。相应的本专利技术还提供了一种基于图像的路径识别系统,其特征是,包括灰度图像采集模块、第一次道路中心定位模块、道路边界检测模块、第二次道路中心定位模块和第三次道路中心定位模块;灰度图像采集模块,用于获取路面的灰度图像;第一次道路中心定位模块,用于对灰度图像逐行计算像素的质心位置,以各行质心位置作为道路中心的第一次定位结果;道路边界检测模块,用于根据第一次定位结果计算质心两侧梯度最大值,获得道路边界及十字路口位置;第二道路中心定位模块,用于计算道路边界内的各行像素的质心位置以及十字路口的质心位置,以此质心位置作为道路中心的第二次定位结果;第三次道路中心定位模块,用于对第二次所获得的道路中心进行滤波,获得最终的道路中心线。进一步的,第一次道路中心定位模块中质心计算公式如下:式中,y1(i)为第i行像素质心所在的列,N为像素的最大列宽,f(i,j)为第i行、j列的图像像素灰度值。进一步的,道路边界检测模块检测道路边界的过程为:在道路中心y1(i)的两侧,分别寻找梯度最大值,取其所在列为道路边界;如果所在列位于图像边界,则该行为十字路口。进一步的,第二道路中心定位模块逐行计算第二次定位结果的过程为:如果此行是十字路口,则以第一次定位结果作为道路中心的第二次定位结果;如果不是十字路口,则计算道路边界内的像素的质心,以此质心位置作为道路中心的第二次定位结果。进一步的,第三次道路中心定位模块中进行滤波的计算公式如下:y3(i)=αy3(i-1)+(1-α)y2(i)式中,α取值范围为0.5~0.9;y2(i)为第二次定位结果,y3(i)为最终道路中心。与现有技术相比,本专利技术所达到的有益效果是:本专利技术采用质心法计算道路中心位置,能够有效克服图像噪声的影响;采用不完全微分方法计算道路边缘,可以抑制噪声对梯度的干扰;对道路内的图像像素进行二次质心定位,能够提高道路中心的定位精度;对二次定位的道路中心像素进行滤波,可以进一步提高识别精度。本专利技术方法无需对图像进行预处理,运算量小,计算速度快。附图说明图1是本专利技术基于灰度图像的路径识别方法流程图。具体实施方式下面结合附图对本专利技术作进一步描述。以下实施例仅用于更加清楚地说明本专利技术的技术方案,而不能以此来限制本专利技术的保护范围。在本专利技术专利的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利技术专利和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利技术专利的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本专利技术专利的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本专利技术专利中的具体含义。通常情况下,图像中路面部分的颜色变化不大,路的边界通常有醒目的颜色或轮廓特征。这种情况下,在拍摄的路面图像中,道路中心因色彩变化不大,其梯度趋近于零,边界梯度因颜色改变或出现边缘而发生剧烈的变化。这种特征,采用微分运算很容易检测出道路边缘。另外,道路中心的像素由于色彩相近,且占有很大的比例,其质心通常位于颜色较近且集中的区域。因此,采用质心法计算道路中心可靠性高,对图像质量的要求不高。本专利技术的一种基于图像的路径识别方法,如图1所示,包括如下步骤:步骤S01:获取路面的灰度图像如果路面图像是彩色图像,则需要先将其转换成灰度图像。基于RGB颜色空间的彩色像素变换为灰度像素的公式为:灰度=红色*0.299+绿色*0.587+蓝色*0.114该公式把一个像素的RGB分量转换呈灰度,通过此公式将彩色图像转换为灰度图像。步骤S02:道路中心第一次定位对灰度图像逐行计算像素的质心位置,以此质心位置作为道路的初始中心。设第i行、j列的图像像素灰度值为f(i,j),则第i行的道路中心所在的列记为y1(i),可采用如下质心公式(1)计算:式(1)中,N为像素的最大列宽。因为此步骤是道路中心的第一次定位,以公式1计算出的道路中心记为y1(i),标识是第一次定位结果,相应的第二次定位结果记为y2(i),第三次定位结果记为y3(i)。步骤S03:道路边界检测首先,采用如下不完全微分算法计算第i行各列的梯度df(i,j):df(i,j)=K[f(i,j)-g(i,j)](2)式(2)中,g(i,j)=g(i,j-1)+df(i,j-1),K为滤波系数,可人工设置,范围为50~150,0<j<N。随后,在道路中心y1(i)的两侧,分别寻找梯度最大值,取其所在列为道路边界;如果所在列位于图像边界,则该行为十字路口。步骤S04:道路中心第二次定位由于第一次定位精度不高,这里将根据步骤S02所得道路边界和十字路口,进行道本文档来自技高网...
一种基于图像的路径识别方法及系统

【技术保护点】
一种基于图像的路径识别方法,其特征是,包括如下步骤:步骤S1,获取路面的灰度图像;步骤S2,对灰度图像逐行计算像素的质心位置,以各行质心位置作为道路中心的第一次定位结果;步骤S3,根据第一次定位结果计算质心两侧梯度最大值,获得道路边界及十字路口位置;步骤S4,逐行判断:如果此行是十字路口,则以第一次定位结果作为道路中心的第二次定位结果;如果不是十字路口,则计算道路边界内的像素的质心,以此质心位置作为道路中心的第二次定位结果;步骤S5,对第二次所获得的道路中心进行滤波,获得最终的道路中心线。

【技术特征摘要】
1.一种基于图像的路径识别方法,其特征是,包括如下步骤:步骤S1,获取路面的灰度图像;步骤S2,对灰度图像逐行计算像素的质心位置,以各行质心位置作为道路中心的第一次定位结果;步骤S3,根据第一次定位结果计算质心两侧梯度最大值,获得道路边界及十字路口位置;步骤S4,逐行判断:如果此行是十字路口,则以第一次定位结果作为道路中心的第二次定位结果;如果不是十字路口,则计算道路边界内的像素的质心,以此质心位置作为道路中心的第二次定位结果;步骤S5,对第二次所获得的道路中心进行滤波,获得最终的道路中心线。2.根据权利要求1所述的一种基于图像的路径识别方法,其特征是,在步骤S2中计算各行像素质心位置的过程为:设第i行、j列的图像像素灰度值为f(i,j),则第i行的质心所在的列记为y1(i),质心计算公式如下:式中,N为像素的最大列宽。3.根据权利要求1所述的一种基于图像的路径识别方法,其特征是,在步骤S3中,在道路中心y1(i)的两侧,分别寻找梯度最大值,取其所在列为道路边界;如果所在列位于图像边界,则该行为十字路口。4.根据权利要求3所述的一种基于图像的路径识别方法,其特征是,采用如下不完全微分算法计算第i行各列的梯度df(i,j):df(i,j)=K[f(i,j)-g(i,j)]式中,g(i,j)=g(i,j-1)+df(i,j-1),K为滤波系数,0<j<N。5.根据权利要求1所述的一种基于图像的路径识别方法,其特征是,在步骤S5中,滤波计算公式:y3(i)=αy3(i-1)+(1-α)y2(i)式中,α取值范围为0.5~0.9;y2(i)为第二次定位结果,y3(i)为最终道路中心。6.一种基于图像的路径识别系统,其特征是,包括灰度图像采集模块、第一...

【专利技术属性】
技术研发人员:杨启文袁杉杉金纪东文禹鸿
申请(专利权)人:河海大学常州校区
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1