The present invention discloses the preparation and application of a titanium alloy implant composite material and its preparation, the titanium alloy implant composite to titanium alloy powder by 3D printing production model for titanium alloy implants of titanium alloy implants in the matrix, the matrix is formed on the surface of micro arc oxidation coating by micro arc oxidation method, and then in the micro arc the surface oxide film by electrochemical deposition method to form hydroxyl apatite or fluorine hydroxyl apatite, the polylactic acid layer is formed on the hydroxyl apatite or fluorine hydroxyl apatite surface impregnation; the invention from the original damaged bone structure data acquisition to the final multi coating composite structure of the preparation, to achieve a personalized development of implant the obtained material, titanium alloy implant composite material with high quality, the polarization tests show that the corrosion resistance of 2 to 3 orders of magnitude improvement, osteoblast culture significantly The prepared titanium alloy composite has better bone cell promoting ability.
【技术实现步骤摘要】
一种钛合金植入体复合材料及其制备与应用(一)
本专利技术涉及一种具有良好生物相容性的钛合金多层生物复合材料及其制备方法,即通过对人体受损骨结构进行多层螺旋CT的扫描,然后将原始数据进行处理修复,再通过3D打印、微弧氧化、电化学沉积、生物高分子层制备等方法制备具有钛合金/微弧氧化膜层/羟基磷灰石(或氟羟基磷灰石)/生物高分子层结构的植入体复合材料。(二)
技术介绍
钛及钛合金材料以其良好的生物活性、生物力学性能和化学性质,被广泛应用于人工关节和牙种植体领域。目前,制备生物医用钛合金的方法主要包括:气相沉积法、粉末冶金法、放电等离子烧结法等。但气相沉积法在制备过程中工艺操作难度系数大、沉积速度比较慢且生产成本高,从而限制了其在医用领域的广泛运用;粉末冶金法在制备过程中烧结时间短,难以控制凝固速度并且难以获得形状复杂的结构;放电等离子烧结法的制备过程成本较高且必须在真空环境下进行。而新型的激光增材制造技术(3D打印),不仅具有精度高的优势且在成形过程中能达到真正的冶金结合,克服了钛合金传统制造工艺所引起的缺点。3D打印技术是以数字模型为基础,运用粉末状金属或塑料等材料,通过逐层熔化和堆积的方式来构造物体的技术。现有的生物工程领域可以通过多层螺旋CT三维重建进行3D打印在骨结构方面的构建,基于多层螺旋CT的三维重建将共同提高实体世界和数字世界之间形态转换的分辨率,可以扫描、编辑和复制实体对象,创建精确的副本或优化原件。在最近的研究中发现钛及钛合金会引起被植入体包覆的无血管纤维组织发生炎症反应,同时也存在导电、导热性能差,与其他金属接触易腐蚀,弹性模量大,金属离子释 ...
【技术保护点】
一种钛合金植入体复合材料,其特征在于所述钛合金植入体复合材料以钛合金粉经3D打印制作的模型为钛合金植入体基体,在钛合金植入体基体表面采用微弧氧化法形成微弧氧化膜层,然后再在微弧氧化膜层表面采用电化学沉积法形成羟基磷灰石层或氟羟基磷灰石层,最后在羟基磷灰石层或氟羟基磷灰石层表面浸渍形成聚乳酸层;所述微弧氧化法所用微弧氧化液组成为:8~12g/L Na
【技术特征摘要】
1.一种钛合金植入体复合材料,其特征在于所述钛合金植入体复合材料以钛合金粉经3D打印制作的模型为钛合金植入体基体,在钛合金植入体基体表面采用微弧氧化法形成微弧氧化膜层,然后再在微弧氧化膜层表面采用电化学沉积法形成羟基磷灰石层或氟羟基磷灰石层,最后在羟基磷灰石层或氟羟基磷灰石层表面浸渍形成聚乳酸层;所述微弧氧化法所用微弧氧化液组成为:8~12g/LNa2SiO3、8~12g/LNa3PO4、6~10g/LNaOH、3~7g/LKF,3~8g/LNa2CO3,1~5g/LKOH,50~100mL/L无水乙醇,溶剂为去离子水,pH值自然;所述羟基磷灰石层所用电化学沉积液组成为:0.042mol/LCa(NO3)2、0.5mol/LNaNO3、0.025mol/LNH4H2PO4、30-50mL/L无水乙醇、30-50mL/L双氧水、0.004-0.006mol/L烷基酚聚氧乙烯醚OP-21,0.1-0.2mol/L柠檬酸三钠,溶剂为去离子水,用缓血酸胺和硝酸调节pH为3-5;所述氟羟基磷灰石层电化学沉积液为向羟基磷灰石层所用电化学沉积液中添加0.0008mol/LNaF。2.如权利要求1所述钛合金植入体复合材料,其特征在于所述微弧氧化膜层厚度为20μm~30μm,所述羟基磷灰石层或氟羟基磷灰石层厚度均为3μm~5μm。3.如权利要求1所述钛合金植入体复合材料,其特征在于所述微弧氧化膜层按如下方法制备:以所述的钛合金植入体基体为阳极,不锈钢为阴极,于微弧氧化液中,在频率为550~650Hz,微弧时间为15~30min,占空比为15~30%,电流密度为15-25A/cm2,操作温度为室温条件下进行微弧氧化反应,反应结束后取出钛合金基体,在去离子水中超声清洗,在20-45℃的烘箱中干燥,获得表面形成微弧氧化膜层的钛合金植入体基体。4.如权利要求1所述钛合金植入体复合材料,其特征在于所述羟基磷灰石层按如下方法制备:以表面形成微弧氧化膜层的钛合金植入体基体为工作电极,铂片作为对电极,饱和甘汞电极作为参比电极,在电化学沉积液中,恒流模式,电流密度为0.39~0.59mA/cm2,沉积温度为50-70℃的条件下进行电化学沉积60-120min后,将所述的钛合金植入体基体取出,用去离子水洗净,室温晾干;再浸入1-2mol/L的NaOH水溶液中,在80℃下浸泡2-4h,然后用去离子水反复洗净,室温晾干后,在氩气或者真空保护气氛下于管式炉中进行高温退火处理,以10℃/min的速度升温至500℃,保温2h,获得表面由外至内依次形成羟基磷灰石层或氟羟基磷灰石层和微弧氧化膜层结构的钛合金植入体基体。5.如权利要求1所述钛合金植入体复合材料,其特征在于所述聚乳酸层的厚度为5μm~10μm。6.如权利要求1所述钛合金植入体复合材料,其特征在于所述聚乳酸层按如下方法制备:将聚乳酸加入到二氯甲烷中,室温均匀搅拌6小时,获得质量浓度2.5%聚乳酸溶液;将表面从外到内依次形成羟基磷灰石层或氟羟基磷灰石层、微弧氧化膜层的钛合金植入体基体浸入聚乳酸溶液中,室温浸泡20-30s后,以15-25mm/min的恒定速度提出,在通风厨内室温晾干,然后去离子水洗净,室温晾干,即获得表面从外到内依次形成聚乳酸层、羟基磷灰石层或氟羟基磷灰石层、微弧氧化膜层的钛合金植入体复合材料。7.如权利要求1所述钛合金植入体复合材料,其特征在于所述钛合金植入体基体按如下方法制备:(1)将受损骨结构进行CT扫描,获得受损骨结构的CT扫描数据,并输入到Materialise三维建模软件,进行阈值划分,然后使用区域增长法去除导入图像的噪音,进行冗余数据的去除、分割受损骨结构区域;(2)通过Materialise三维建模软件开运算获得受损骨结构的三维结构数据,然后将获得的三维结构数据输入UG软件,获得数字化骨缺损三维模型;(3)根据数字化骨缺损三维模型,使用CAD软件设计骨缺损模块,获得STL模型;(4)将钛合金粉末在球磨机中混合均匀,磨转速为250r/min,球磨时间为30min,并且采用氮气作为保护气体,获得球磨后的钛合金粉末;将STL模型输入3D打印机...
【专利技术属性】
技术研发人员:金杰,郑大才,段和洁,朱峥栩,
申请(专利权)人:浙江工业大学,
类型:发明
国别省市:浙江,33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。