【技术实现步骤摘要】
文本语义理解方法、装置和系统
本申请涉及自然语言理解
,尤其涉及一种文本语义理解方法、装置和系统。
技术介绍
作为人工智能领域中重要方向之一的自然语言理解技术,一直是相关领域研究人员研究的热点。特别是近年来,随着移动互联网技术的迅速发展,信息化程度日益提高,人们越发渴望能让机器理解自然语言,从而实现减少人工投入、海量数据共享等目标。相关技术中,主流方法是基于循环神经网络的文本语义理解方法和基于卷积神经网络的文本语义理解方法。但是,通常的循环神经网络和卷积神经网络都难以优化,具体而言,如果不增加深度,文本语义理解效果较差,而如果增加深度,训练和优化的错误率就会增加,难以得到准确的训练模型,从而语义理解错误率也较高。因此,相关技术中的文本语义理解方法的效果并不理想。
技术实现思路
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种文本语义理解方法,该方法可以提升文本语义理解效果。本申请的另一个目的在于提出一种文本语义理解装置。本申请的另一个目的在于提出一种文本语义理解系统。为达到上述目的,本申请第一方面实施例提出的文本语义理解方法,包括:接收待语义理解的文本;根据预先构建的深度残差网络模型,对所述待语义理解的文本进行语义理解,得到语义理解结果。为达到上述目的,本申请第二方面实施例提出的文本语义理解装置,包括:接收模块,用于接收待语义理解的文本;语义理解模块,用于根据预先构建的深度残差网络模型,对所述待语义理解的文本进行语义理解,得到语义理解结果。为达到上述目的,本申请第三方面实施例提出的文本语义理解系统,包括:客户端, ...
【技术保护点】
一种文本语义理解方法,其特征在于,包括:接收待语义理解的文本;根据预先构建的深度残差网络模型,对所述待语义理解的文本进行语义理解,得到语义理解结果。
【技术特征摘要】
1.一种文本语义理解方法,其特征在于,包括:接收待语义理解的文本;根据预先构建的深度残差网络模型,对所述待语义理解的文本进行语义理解,得到语义理解结果。2.根据权利要求1所述的方法,其特征在于,对所述待语义理解的文本进行语义理解之前,所述方法还包括:对所述待语义理解的文本进行预处理。3.根据权利要求2所述的方法,其特征在于,还包括:构建深度残差网络模型,所述构建深度残差网络模型,包括:收集训练文本,并对所述训练文本进行预处理,以及,获取所述训练文本的标注信息,所述标注信息包括语义理解结果;确定深度残差网络模型的拓扑结构;基于预处理后的训练文本、所述标注信息和所述拓扑结构进行模型训练,构建得到深度残差网络模型。4.根据权利要求3所述的方法,其特征在于,当存在多任务时,所述模型训练基于多任务同步处理机制进行。5.根据权利要求4所述的方法,其特征在于,所述模型训练时,通过对整体损失函数进行最小化确定模型参数,其中,所述整体损失函数为各个任务的损失函数的线性加权函数。6.根据权利要求1所述的方法,其特征在于,所述深度残差网络模型的拓扑结构中包括:辅助输入层,所述辅助输入层用于输入先验信息。7.根据权利要求6所述的方法,其特征在于,所述辅助输入层包括:输入部分,用于输入先验信息,并对先验信息进行向量化;变换部分,用于对向量化后的先验信息进行向量变换。8.根据权利要求1所述的方法,其特征在于,所述深度残差网络模型的拓扑结构中包括:注意力层,所述注意力层包括:非线性变换部分,用于对输入矩阵进行非线性变换,得到非线性变换后的矩阵,所述输入矩阵由各个词组的词向量组成;权重控制部分,用于采用预设向量分别与非线性变换后的矩阵中的各个词组的词向量做内积,得到控制向量;权重分配部分,用于对所述控制向量进行权重分配,得到权重向量;组合部分,用于采用所述权重向量对所述输入矩阵中不同词组的词向量进行线性组合,得到注意力层的输出。9.根据权利要求1所述的方法,其特征在于,所述深度残差网络模型的拓扑结构中包括:残差单元层,所述残差单元层包括卷积层级联部分和捷径部分,所述卷积层级联部分包括多个相互级联的卷积层,所述捷径部分用于将输入直接或对输入进行线性变换后与卷积层级联部分的输出相加,再对相加后的值进行激活。10.一种文本语义理解装置,其特征在于,包括:接收模块,用于接收待语义理解的文本;语义理解模块,用于根据预先构建的深度残差网络模型,对所述待语义理解的文本进行语义理解,得...
【专利技术属性】
技术研发人员:刘也宽,胡加学,孙胜杰,王震,
申请(专利权)人:科大讯飞股份有限公司,
类型:发明
国别省市:安徽,34
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。