【技术实现步骤摘要】
高分辨率星载SAR成像质量提升方法
本专利技术涉及一种航天系统
,具体地,涉及一种高分辨率星载SAR成像质量提升方法。
技术介绍
自从1978年美国NASA发射第一颗合成孔径雷达(SAR)卫星以来,已经有50多颗雷达卫星发射和在轨工作。合成孔径雷达卫星以其特有的全天时、全天候对地观测的特点,得到了各科技强国的重视和大力发展。高分辨率SAR卫星一直是发展的重点和难点,也雷达卫星发展的主要方向。根据美国侦察和监视对SAR图像分辨率的要求,要对战场目标发现,分辨率应优于0.9m;对目标进行识别,分辨率应优于0.6m;对目标进行确认和描述,分辨率应优于0.3m。可见,高分辨率SAR卫星对于高精度目标监视尤为重要。同时,高分辨率SAR卫星在国土资源普查、测绘、防灾减灾中发挥了不可替代的作用,对于灾情的评估通常需要优于2m分辨率的SAR图像。目前,国际上典型的星载SAR的分辨率绝大多数在1m~3m量级,如德国的TerraSAR卫星和加拿大的RadarSat-2卫星最高分辨率均为1m。可见,分辨率指标的提升有广泛的应用需求。同时,国际上在轨SAR卫星图像使用过程中,也提出成像质量提升得要求,主要有以下几个方面:1、对海陆交界目标动态变化大的区域进行成像时,在海面等弱背景下,图像上偶尔会出现“鬼影”目标,主要是SAR模糊指标较低所致,需要对模糊度指标进行提升。2、某些星载SAR图像的信噪比较差,影响对图像上目标的探测能力,主要由于系统灵敏度不够高,因此,有必要提升系统灵敏度指标。3、SCANSAR图像中出现中各子条带间辐射不均匀的“扇贝效应”,主要由卫星姿态误差和波 ...
【技术保护点】
一种高分辨率星载SAR成像质量提升方法,其特征在于,其包括以下步骤:步骤一,基于高分辨率SAR图像应用的成像质量提升需求分析及成像质量指标梳理;步骤二,最优化成像质量指标分解和分配;步骤三,提出提升成像质量的措施;步骤四,基于全链路仿真的成像质量提升效果评估。
【技术特征摘要】
1.一种高分辨率星载SAR成像质量提升方法,其特征在于,其包括以下步骤:步骤一,基于高分辨率SAR图像应用的成像质量提升需求分析及成像质量指标梳理;步骤二,最优化成像质量指标分解和分配;步骤三,提出提升成像质量的措施;步骤四,基于全链路仿真的成像质量提升效果评估。2.根据权利要求1所述的高分辨率星载SAR成像质量提升方法,其特征在于,所述步骤一中具体包括以下步骤:步骤一十一,基于已有SAR卫星能力不足的现状,考虑SAR图像应用中典型目标地高精度识别和确认需求、高精度测绘需求、精确灾情评估需求;同时,针对当前SAR图像使用中的原理性问题提出成像质量指标提升要求,这些原理性问题包括海陆交界区域的SAR图像模糊度问题、图像信噪比不足、点目标旁瓣问题、定位精度不高问题、SCANSAR图像扇贝问题;步骤一十二,根据需求分析结果梳理成像质量指标体系,并给出量化的提升要求;成像质量指标至少考虑分辨率、峰值旁瓣比、积分旁瓣比、系统灵敏度、方位模糊度、距离模糊度、定位精度和辐射精度。3.根据权利要求1所述的高分辨率星载SAR成像质量提升方法,其特征在于,所述步骤二具体包括以下步骤:步骤二十一,建立成像质量指标公式及其与影响因素的关系模型;方位向地面分辨率其中Vg为成像区位置的地速,Bp为单个目标的多普勒处理带宽,k1为方位向方向图加权展宽系数,k2为成像处理加权展宽系数,k3为多普勒参数误差引起的展宽系数,k4为成像算法引起的展宽系数;距离向地面分辨率其中c为光速,η为入射角,Br为信号带宽,k1为成像处理加权展宽系数,k2为SAR系统幅相误差和色散引起的展宽系数,k3为成像算法引起的展宽系数;峰值旁瓣比PSLR=PSLR0-ΔPSLR1-ΔPSLR2,其中ΔPSLR1为SAR系统幅相误差和色散引起的旁瓣比下降,ΔPSLR2为成像处理误差引入的旁瓣比下降,PSLR0为特定处理加权下的理论峰值旁瓣比,Psmax为点目标冲激响应的最高旁瓣峰值功率,Pm为点目标冲激响应的主瓣最高峰值功率;积分旁瓣比ISLR=ISLR0-ΔISLR1-ΔISLR2,其中ΔISLR1为SAR系统幅相误差和色散引起的旁瓣比下降,ΔISLR2为成像处理误差引入的旁瓣比下降,ISLR0为特定处理加权下的理论积分旁瓣比,h(r)为点目标冲激响应函数,积分域(a,b)以内为主瓣区域,主瓣以外为旁瓣区域;系统灵敏度成像区域内最差NEσ0=max(NEσ0(σa,θr)),其中,Te为系统效噪声温度,k为波尔兹曼常数,L(σa)为系统损耗,Vst为相对地速,σa为方位向目标点位置,R(θr)为目标到雷达距离,λ为载波中心频率波长,为发射峰值功率,tp为发射脉冲时宽,G2(θr)为目标在方向图中相应指向角的增益,ρr为距离向分辨率,fp为发射脉冲重复频率,θr为成像区域内的下视角取值;方位模糊度其中i为方位向成像带内目标点序号,K为目标点数量,i=1,2……K,σi为方位向目标点位置,N为量化的波束扫描角位置数,fn(σi)为σi目标点的第n个扫描角位置对应的多普勒频率值,n=1,2,3……N,Δfdc为多普勒中心频率误差,为第n个扫描角位置的多普勒能量谱,fp为脉冲重复频率,m为模糊区序号;距离向模糊度RASR=max(RASR(τi)),其中式中n为模糊区序号,理论最大值为地球相切时的模糊区序号,为距离向收发双程等效天线方向图,τi为目标i的回波时延,fp为脉冲重复频率,θi为入射角,σ0为场景内目标后向散射系数,R(τi)为观测带内目标i的斜距,R(τi+n/fp)为观测带内目标i的模糊目标的斜距;目标定位精度其中ΔX1为卫星航迹向位置误差引起的方位向定位误差,ΔX2为卫星速度误差引起的方位向定位误差,ΔX3为回波...
【专利技术属性】
技术研发人员:范季夏,薛伶玲,姜岩,涂上坦,
申请(专利权)人:上海卫星工程研究所,
类型:发明
国别省市:上海,31
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。