当前位置: 首页 > 专利查询>福州大学专利>正文

一种结合形态学和标记控制的无人机影像林冠分割方法技术

技术编号:15692000 阅读:136 留言:0更新日期:2017-06-24 05:39
本发明专利技术涉及一种结合形态学和标记控制的无人机影像林冠分割方法:利用无人机获取若干幅林区的局部遥感影像,经镶嵌和正射校正得到完整遥感影像;采用高斯滤波方法对绿光波段进行平滑滤波处理;采用自适应的局部最大值搜索方法从绿光波段中检测林冠顶点位置;利用形态学运算,通过一个强制最小值转换将获取的林冠顶点位置信息强加到影像上;对于正射校正的真彩色遥感影像,采用ISODATA聚类算法得到只包含林冠区域和非林冠区域两类的二值影像,将提取出的非林冠区域作为分割的外部标记;将外部标记强加到经过强制最小值转换后的影像上进行分水岭变换分割,获得精确的林分单木林冠边界信息。本发明专利技术有效解决了常规方法造成的林冠边界分割不准确问题。

A canopy segmentation method based on morphological and marker control for unmanned aerial vehicle images

The invention relates to a method of image segmentation based on morphology and canopy marker controlled local images by UAV to obtain a plurality of forest, the mosaic and orthorectification complete remote sensing image; using Gauss filtering method of green band smoothing filter processing; adaptive local maximum searching method for the detection of the canopy vertex positions from the green band; using morphological operations, through a mandatory minimum vertex position information to the canopy image conversion will get on; to orthorectify true color remote sensing image, using ISODATA clustering algorithm only contains canopy area and non canopy area two class two value image, non forest area will be extracted as the external marker segmentation; the external tag added to the compulsory minimum converted image on the water Ridge transform segmentation is used to obtain accurate forest canopy boundary information. The invention effectively solves the problem of inaccurate segmentation of the canopy boundary caused by the conventional method.

【技术实现步骤摘要】
一种结合形态学和标记控制的无人机影像林冠分割方法
本专利技术涉及一种结合形态学和标记控制的无人机影像林冠分割方法。
技术介绍
树冠作为树木获取光能并进行能量转换的场所,其对于研究森林生长情况和动态变化具有重要意义。但由于森林结构的复杂性和随机性,使得对树冠形状和边界信息的获取异常困难。近年来,随着卫星遥感技术的发展,尤其是卫星影像空间分辨率的逐渐提高,提高了森林树冠的估测精度,但受到气候、周期、分辨率和成本等因素的影响,使得获取的遥感数据远远不能满足林业调查的需求。无人机遥感作为新兴遥感技术,其特有的机动灵活性、时效性和成本低,数据易获取等优势而逐渐成为卫星遥感技术的有效补充手段,并在多个领域得到了广泛应用。虽然针对无人机技术的研究日益增多,但针对可见光无人机影像提取森林冠层结构信息的研究还处于试验阶段,如Díazvarela等评估了普通无人机相机影像获取树冠参数的可靠程度,并对西班牙科尔多瓦地区的一处橄榄育种园地进行了试验,其冠幅估测的RMSE达到了0.28。Chianucci等利用eBee无人飞行系统获取的真彩色影像,并结合LAB2影像分类方法来估算山毛榉林的森林冠层覆盖度,其决定系数R2达到0.7左右;此外还有Morgenroth、Mathews等利用无人机影像生成的点云数据来对森林冠层结构进行分析,并取得了一定成果。但常规的林冠分割方法会造成林冠边界分割不准确的问题,这对于无人机遥感获取森林参数的精度带来不确定性。
技术实现思路
有鉴于此,本专利技术的目的在于提供一种结合形态学和标记控制的无人机影像林冠分割方法,有效解决了常规方法造成的林冠边界分割不准确问题。为实现上述目的,本专利技术采用如下技术方案:一种结合形态学和标记控制的无人机影像林冠分割方法,其特征在于,包括以下步骤:步骤S1:利用无人机获取若干幅林区的局部遥感影像,对所述若干幅林区遥感图像进行镶嵌和正射校正得到林区的完整遥感影像;步骤S2:采用高斯滤波方法对完整遥感影像的绿光波段进行平滑滤波处理;步骤S3:采用自适应的局部最大值搜索方法从完整遥感影像的绿光波段中检测林冠顶点位置;步骤S4:利用形态学运算,通过一个强制最小值转换将获取的林冠顶点位置信息强加到平滑滤波后的绿光波段影像上;步骤S5:对于步骤S1获得的完整遥感影像,采用ISODATA聚类算法得到只包含林冠区域和非林冠区域两类的二值影像,将提取出的非林冠区域作为分割的外部标记;步骤S6:基于步骤S4和步骤S5获得的结果,将外部标记强加到经过强制最小值转换后的影像上进行分水岭变换分割,获得精确的林分单木林冠边界信息。进一步的,所述局部遥感影像为真彩色影像,分辨率在0.05-0.20m之间。进一步的,所述步骤S2的具体方法如下:采用一个高斯分布曲线来对完整遥感影像的绿光波段进行处理,减少影像的噪声水平和强化林冠顶点的辐射强度值,滤波公式如下:式中,G(i,j)为第i行,j列处影像象元高斯滤波结果,i、j为自然数,σ为高斯滤波的均方差,σ取值选择林分内最小林冠尺寸大小作为窗口进行影像滤波处理。进一步的,所述步骤S3的具体方法如下:步骤S31:通过一个固定窗口探测样地内潜在的林冠顶点位置,获得潜在林冠顶点;步骤S32:采用自适应的动态窗口对获取的潜在林冠顶点进行判断,如果当前顶点为对应窗口区域的最大值则保存,否则删除;动态窗口大小通过计算潜在顶点八个剖面方向半方差的变程值进行确定,其影像像元的半方差计算公式为:式中,γ(h)为经验半方差值,xi为影像的像元位置,h为两个像元的空间分隔距离,Z(x)为对应影像xi处的像元值,N为在一定分隔距离下像元对的对数。进一步的,所述步骤S4的具体方法如下:步骤S41:对滤波处理后的影像f进行取反操作,然后对获取的林冠顶点进行极小值标记,获得标记影像,如下式:式中,fm为获取的标记影像,p为影像的每个像元,tmax为影像的最大值;步骤S42:逐像元的计算影像f+1和标记影像fm之间的极小值,对影像进行强制最小值转换;这一步骤中,形态学计算表示为:(f+1)∧fm,然后利用标记图像fm对(f+1)∧fm进行形态学腐蚀重建,如下式:式中,fmp为强制最小值转换后的影像,描述(f+1)∧fm在标记影像fm掩膜下的形态学腐蚀重建过程。进一步的,所述步骤S5的具体方法如下:基于获得的完整遥感影像,采用ISODATA非监督分类方法进行分类,设置的分类类别数≥10,最大迭代次数≥5;对获取的分类结果通过目视判读进行合并,得到只包含林冠区域和非林冠区域这两类的二值影像,并将提取出的非林冠区域作为分割的外部标记。进一步的,所述步骤S6中分水岭变换分割采用公式如下:式中,WaterShed()是分水岭函数;Mask是掩膜函数;BOutMask是外部标记,即非林冠区域,Wcanopy为林分单木林冠边界。本专利技术与现有技术相比具有以下有益效果:本专利技术有效解决了常规方法造成的林冠边界分割不准确问题;有利于森林树冠信息的快速有效提取,为森林资源调查中林分株数、郁闭度的准确高效估算提供有力支持。附图说明图1是本专利技术的方法流程图。图2A是本专利技术实施例一的无人机影像。图2B是本专利技术实施例一的绿光波段滤波结果。图2C是本专利技术实施例一的直接分水岭分割结果。图2D是本专利技术实施例一采用固定窗口提取的林冠顶点。图2E是本专利技术实施例一采用可变窗口去除异常值结果。图2F是本专利技术实施例一的林冠非林冠二值图。图2G是本专利技术实施例一的形态学重构标记结果。图2H是本专利技术实施例一的内外部标记添加结果。图2I是本专利技术实施例一的结合内外标记影像分割结果。图3A本专利技术实施例二的无人机影像。图3B本专利技术实施例二的直接分水岭分割结果。图3C本专利技术实施例二采用固定窗口提取的林冠定点。图3D本专利技术实施例二的自适应窗口去除异常顶点结果。图3E本专利技术实施例二的强加林冠顶点影像。图3F本专利技术实施例二的形态学重构结果。图3G本专利技术实施例二的林冠非林冠二值图。图3H本专利技术实施例二的内标记影像直接分水岭分割结果。图3I本专利技术实施例二的结合内外标记影像分割结果。具体实施方式下面结合附图及实施例对本专利技术做进一步说明。请参照图1,本专利技术提供一种结合形态学和标记控制的无人机影像林冠分割方法,其特征在于,包括以下步骤:步骤S1:利用无人机获取若干幅分辨率在0.05-0.20m之间的林区的局部遥感影像,对所述若干幅林区遥感图像进行镶嵌和正射校正得到林区的完整遥感影像;所述局部遥感图像至少应为包含红、绿、蓝波段的真彩色影像,且影像的航向和旁向重叠率≥80%,经镶嵌和正射校正得到的完整遥感影像无明显拼接痕迹。步骤S2:采用高斯滤波方法对完整遥感影像的绿光波段进行平滑滤波处理;具体方法如下:采用一个高斯分布曲线(钟形曲线)来对完整遥感影像的绿光波段进行处理,减少影像的噪声水平和强化林冠顶点的辐射强度值,滤波公式如下:式中,G(i,j)为第i行,j列处影像象元高斯滤波结果,i、j为自然数,,σ为高斯滤波的均方差,σ取值选择林分内最小林冠尺寸大小作为窗口进行影像滤波处理。步骤S3:采用自适应的局部最大值搜索方法从完整遥感影像的绿光波段中检测林冠顶点位置;具体方法如下:步骤S31:首先,通过一个较小的固定窗口探测样地内潜在的林冠顶点位置,获得潜在林冠顶点;步本文档来自技高网...
一种结合形态学和标记控制的无人机影像林冠分割方法

【技术保护点】
一种结合形态学和标记控制的无人机影像林冠分割方法,其特征在于,包括以下步骤:步骤S1:利用无人机获取若干幅林区的局部遥感影像,对所述若干幅林区遥感图像进行镶嵌和正射校正得到林区的完整遥感影像;步骤S2:采用高斯滤波方法对完整遥感影像的绿光波段进行平滑滤波处理;步骤S3:采用自适应的局部最大值搜索方法从完整遥感影像的绿光波段中检测林冠顶点位置;步骤S4:利用形态学运算,通过一个强制最小值转换将获取的林冠顶点位置信息强加到平滑滤波后的绿光波段影像上;步骤S5:对于步骤S1获得的完整遥感影像,采用ISODATA聚类算法得到只包含林冠区域和非林冠区域两类的二值影像,将提取出的非林冠区域作为分割的外部标记;步骤S6:基于步骤S4和步骤S5获得的结果,将外部标记强加到经过强制最小值转换后的影像上进行分水岭变换分割,获得精确的林分单木林冠边界信息。

【技术特征摘要】
1.一种结合形态学和标记控制的无人机影像林冠分割方法,其特征在于,包括以下步骤:步骤S1:利用无人机获取若干幅林区的局部遥感影像,对所述若干幅林区遥感图像进行镶嵌和正射校正得到林区的完整遥感影像;步骤S2:采用高斯滤波方法对完整遥感影像的绿光波段进行平滑滤波处理;步骤S3:采用自适应的局部最大值搜索方法从完整遥感影像的绿光波段中检测林冠顶点位置;步骤S4:利用形态学运算,通过一个强制最小值转换将获取的林冠顶点位置信息强加到平滑滤波后的绿光波段影像上;步骤S5:对于步骤S1获得的完整遥感影像,采用ISODATA聚类算法得到只包含林冠区域和非林冠区域两类的二值影像,将提取出的非林冠区域作为分割的外部标记;步骤S6:基于步骤S4和步骤S5获得的结果,将外部标记强加到经过强制最小值转换后的影像上进行分水岭变换分割,获得精确的林分单木林冠边界信息。2.根据权利要求1所述的结合形态学和标记控制的无人机影像林冠分割方法,其特征在于:所述局部遥感影像为真彩色影像,分辨率在0.05-0.20m之间。3.根据权利要求1所述的结合形态学和标记控制的无人机影像林冠分割方法,其特征在于:所述步骤S2的具体方法如下:采用一个高斯分布曲线来对完整遥感影像的绿光波段进行处理,减少影像的噪声水平和强化林冠顶点的辐射强度值,滤波公式如下:式中,G(i,j)为第i行,j列处影像象元高斯滤波结果,i、j为自然数,σ为高斯滤波的均方差,σ取值选择林分内最小林冠尺寸大小作为窗口进行影像滤波处理。4.根据权利要求1所述的结合形态学和标记控制的无人机影像林冠分割方法,其特征在于:所述步骤S3的具体方法如下:步骤S31:通过一个固定窗口探测样地内潜在的林冠顶点位置,获得潜在林冠顶点;步骤S32:采用自适应的动态窗口对获取的潜在林冠顶点进行判断,如果当前顶点...

【专利技术属性】
技术研发人员:周小成鲁林黄洪宇汪小钦
申请(专利权)人:福州大学
类型:发明
国别省市:福建,35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1