本实用新型专利技术公开了一种透反组合式荧光倍增比色皿,属于光谱分析技术领域,包括玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4),所述比色皿由玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4)合成一体,中间围成一个长方体型样品槽(5),底部为玻璃基底(1),样品槽(5)的前侧和后侧均为泵浦光入射镜(2),左侧为弧面反射镜(3),右侧为弧面透射镜(4)。本实用新型专利技术利用玻璃的透射和反射原理、凸透镜对光线的准直聚焦功能,提高荧光到后端光敏器件的耦合传导效率;采用掺杂稀土离子的玻璃构成比色皿,实现荧光信号的可控增益放大,能替代光电倍增管实现信号放大的目的。
【技术实现步骤摘要】
一种透反组合式荧光倍增比色皿
本技术属于光谱分析
,具体涉及一种透反组合式荧光倍增比色皿。
技术介绍
比色皿(又名吸收池、样品池)是光谱分析仪器的重要配件,进行物质定量或定性分析时用来盛放样品液和参比液,广泛应用于化工、医疗、冶金、食品、环保、水电和石油等行业,以及大专院校和科研院所的测试化验。比色皿一般选用石英玻璃和光学玻璃,采用高温熔融一体、玻璃粉高温烧结等工艺制成。基于受激辐射的原理,盛放在比色皿样品槽中的样品液,在泵浦光作用下辐射出的荧光,是向着各个方向随机发散辐射的。因此传统比色皿样品槽中受激辐射的荧光,通常只有一小部分耦合传导到后端的光敏器件中,这就造成了荧光检测的灵敏度不高,分辨率较低的问题。为了提高荧光检测的灵敏度和分辨率,检测仪器通常需要增加光电倍增管等器件。
技术实现思路
本技术是针对以上的实际问题,提供一种新型比色皿,在光谱分析中能代替光电倍增管实现荧光信号放大的目的。为实现上述目的,本技术采取的技术方案如下:一种透反组合式荧光倍增比色皿,包括玻璃基底、泵浦光入射镜、弧面反射镜和弧面透射镜,所述比色皿由玻璃基底、泵浦光入射镜、弧面反射镜和弧面透射镜合成一体,中间围成一个长方体型样品槽,底部为玻璃基底,样品槽的前侧和后侧均为泵浦光入射镜,左侧为弧面反射镜,右侧为弧面透射镜,所述弧面反射镜和弧面透射镜由掺杂稀土元素离子的玻璃构成。上述技术方案中,优选的,所述泵浦光入射镜均为长方体型玻璃透镜,在样品槽的中轴线两侧呈对称设置。上述技术方案中,优选的,所述弧面反射镜和弧面透射镜均是单边圆弧面在外侧、单边平直面在里侧的结构。上述技术方案中,优选的,所述弧面反射镜和弧面透射镜的横剖面结构均是中间厚、边缘薄的对称凸透镜结构。上述技术方案中,优选的,所述弧面反射镜和弧面透射镜的平直面均是样品槽的一个构成面。上述技术方案中,优选的,所述弧面反射镜的圆弧面是镀有镜面反射材料的凹面反射镜,凹面反射镜面朝向样品槽。上述技术方案中,优选的,所述弧面透射镜的圆弧面镀有增透膜。上述技术方案中,优选的,所述增透膜厚度为样品槽中样品液或参比液激发荧光波长的四分之一。有益效果:1、本技术利用比色皿弧面反射镜的反射、聚焦准直作用,将投射到弧面反射镜一侧的荧光,反射、汇聚到弧面透射镜一侧,增加弧面透射镜输出的荧光强度,并且使弧面透射镜输出的荧光能量更加集中。2、利用比色皿弧面透射镜的聚焦准直作用,将投射到弧面透射镜的荧光汇聚输出,使弧面透射镜输出的荧光能量更加集中。3、在弧面反射镜和弧面投射镜的玻璃中掺杂稀土元素离子,利用稀土元素离子的受激辐射原理,当荧光在透镜玻璃中传导时,将泵浦光的能量转变为荧光的能量,实现荧光能量的高增益放大。通过控制弧面反射镜和弧面透射镜玻璃中稀土元素离子的掺杂浓度、泵浦光强度,实现荧光放大增益倍数的控制。4、弧面透射镜的弧面镀有增透膜,减少透镜镜面对荧光的反射能量损耗,增加弧面透射镜输出的荧光强度。综上所述,本技术利用玻璃的透射和反射原理、凸透镜对光线的准直聚焦功能,提高荧光到后端光敏器件的耦合传导效率;采用掺杂稀土离子的玻璃构成比色皿,利用稀土离子受激辐射的光放大原理,实现荧光信号的可控增益放大,能替代光电倍增管实现信号放大的目的。本技术提供的比色皿在进行分析时,既能提高荧光检测的灵敏度和分辨率,提高检测准确率,又能减少检测仪器的配件,减少检测成本。附图说明图1为本技术的立体结构图;图2为本技术的透视结构图;图3A为本技术的正视图,3B为本技术的左视图,3C为本技术的俯视图;图4为荧光激发示意图(其中a为测试样品离子,b为泵浦光,c为荧光光子);图5为荧光在弧面反射镜中的反射和放大过程示意图(其中a为测试样品离子,b为泵浦光,c为荧光光子,d为稀土元素离子);图6为荧光在弧面透射镜中的传导和放大过程示意图(其中a为测试样品离子,b为泵浦光,c为荧光光子,d为稀土元素离子)。具体实施方式下面,结合附图和实施例对本技术作进一步说明。如图1-3所示,本技术提供的一种透反组合式荧光倍增比色皿,包括玻璃基底1、泵浦光入射镜2、弧面反射镜3和弧面透射镜4,所述比色皿由玻璃基底1、泵浦光入射镜2、弧面反射镜3和弧面透射镜4胶合成一体,中间围成一个长方体型样品槽5,底部为玻璃基底1,样品槽5的前侧和后侧均为泵浦光入射镜2,左侧为弧面反射镜3,右侧为弧面透射镜4。如图1-3所示,玻璃基底1的下表面和比色皿顶部的上表面为磨毛玻璃。比色皿顶部的上表面由三个面组成,分别为泵浦光入射镜2、弧面反射镜3和弧面透射镜4围成的一个上平面和两个对称的斜面构成。泵浦光入射镜2均为长方体型玻璃透镜,在样品槽5的中轴线两侧呈对称设置。弧面反射镜3和弧面透射镜4由掺杂稀土元素离子的玻璃构成,均是单边圆弧面在外侧、单边平直面在里侧的结构,横剖面结构均是中间厚、边缘薄的对称凸透镜结构。弧面反射镜3和弧面透射镜4的平直面均是样品槽5的一个构成面。弧面反射镜3的圆弧面是镀有镜面反射材料的凹面反射镜,凹面反射镜面朝向样品槽。弧面透射镜4的圆弧面镀有增透膜,增透膜厚度为样品槽中样品液或参比液激发荧光波长的四分之一。本技术提供的透反组合式荧光倍增比色皿,在工作时,如图4所示,在样品槽中盛放样品液(或参比液),特定波长的泵浦光透过比色皿的泵浦光入射镜2,投射到样品槽5;样品液中的元素离子即测试样品离子a被泵浦光b激发,电子吸收泵浦光b能量之后从基态跃迁到能阶更高的激发态;由于处于激发态电子是不稳定的,因此电子会随即从激发态跃迁回低能阶的基态,能量会以光的形式释放,也就是向四周散射荧光光子c。弧面反射镜3和弧面透射镜4中掺杂的稀土元素离子,具有基态、亚稳态和激发态等能阶,其中激发态的能阶高于亚稳态和稳态,亚稳态的能阶高于稳态。亚稳态和稳态之间的能量差,等于图4中样品液被泵浦光b激发的荧光光子c的能量。如图5和图6所示,特定波长的泵浦光b,透射到弧面反射镜3和弧面透射镜4的玻璃中。掺杂在玻璃中稀土元素离子d吸收了泵浦光b能量后,电子从基态跃迁到能阶更高的激发态,随即释放少量能量转移到较稳定的亚稳态。足够强度的泵浦光b,透射到弧面反射镜3和弧面透射镜4的玻璃中,玻璃中掺杂的稀土元素离子d发生居量反转,使得处于高能阶亚稳态的电子数量多于低能阶的基态电子。样品液受激发出的荧光光子c,辐射作用于处于亚稳态的稀土元素电子d,导致电子从亚稳态跃迁到能量更低的稳态,同时辐射出与外来荧光光子c频率、相位、偏振状态、传播方向完全相同的光子,实现了荧光光子c的倍增放大,如图5和图6所示。通过控制弧面反射镜和弧面透射镜玻璃中稀土元素离子d的掺杂浓度、泵浦光强度,实现荧光放大增益倍数的控制。发散辐射到弧面反射镜3一侧的荧光光子,由于镜面反射的作用,反向辐射到弧面透射镜4一侧;利用弧面反射镜3所具有的凸透镜准直功能,将发散的荧光光线汇聚输出,提高弧面反射镜3中心线邻近区域的荧光强度。如图5所示,荧光光子在弧面反射镜玻璃的入射和反射过程中,基于泵浦光作用下的稀土离子受激辐射原理,实现了多次的光子数量倍增放大。发散辐射到弧面透射镜4一侧的荧光光子,在穿过弧面透射镜玻璃的过程中,如图6所示;通过控制弧面透射镜玻本文档来自技高网...
【技术保护点】
一种透反组合式荧光倍增比色皿,其特征在于:包括玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4),所述比色皿由玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4)合成一体,中间围成一个长方体型样品槽(5),底部为玻璃基底(1),样品槽(5)的前侧和后侧均为泵浦光入射镜(2),左侧为弧面反射镜(3),右侧为弧面透射镜(4),所述弧面反射镜(3)和弧面透射镜(4)由掺杂稀土元素离子的玻璃构成。
【技术特征摘要】
1.一种透反组合式荧光倍增比色皿,其特征在于:包括玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4),所述比色皿由玻璃基底(1)、泵浦光入射镜(2)、弧面反射镜(3)和弧面透射镜(4)合成一体,中间围成一个长方体型样品槽(5),底部为玻璃基底(1),样品槽(5)的前侧和后侧均为泵浦光入射镜(2),左侧为弧面反射镜(3),右侧为弧面透射镜(4),所述弧面反射镜(3)和弧面透射镜(4)由掺杂稀土元素离子的玻璃构成。2.根据权利要求1所述的透反组合式荧光倍增比色皿,其特征在于:所述泵浦光入射镜(2)均为长方体型玻璃透镜,在样品槽(5)的中轴线两侧呈对称设置。3.根据权利要求1所述的透反组合式荧光倍增比色皿,其特征在于:所述弧面反射镜(3)和弧面透射镜(4)均是单边圆弧面在外...
【专利技术属性】
技术研发人员:胡鸿志,许金,苏海涛,梁英,郭庆,徐翠锋,
申请(专利权)人:桂林电子科技大学,
类型:新型
国别省市:广西,45
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。