本发明专利技术公开了一种脑机接口系统,包括脑电信号采集电极、模拟信号处理模块和数字信号处理模块;模拟信号处理模块包括前置放大电路、抗混叠滤波电路、直流补偿电路;数字信号处理模块包括模数转换器、微控制器、ARM处理器、无线传输电路;脑电信号采集电极将获取到的信号输入前置放大电路,前置放大电路的输出分别与抗混叠滤波电路和直流补偿电路相连,直流补偿电路的输出端连接前置放大电路;抗混叠滤波电路的输出端依次连接模数转换器、微控制器、ARM处理器和无线传输电路。本发明专利技术通过合理设计硬件电路和数字电路,能够获得高信噪比的脑电信号,电路结构简单,能够减小接口设备的体积,并且能够实现实时在线数据处理,能够广泛应用于实际生活中。
【技术实现步骤摘要】
一种脑机接口系统
本专利技术属于生物信息
,特别涉及一种脑机接口系统。
技术介绍
脑机接口是一项新型的人机交互技术,是一种不依赖于大脑外周神经与肌肉正常输出通道的通讯控制系统。它通过采集和分析人脑生物电信号,在人脑与计算机或其它电子设备之间建立起直接交流和控制的通道,这样人就可以通过脑来表达意愿或操纵设备,而不需要语占或肢体动作。脑机接口的重要用途是帮助那些思维正常但运动能力严重受限的患者提供帮助,使其在外界设备的帮助下更方面与外界沟通交流。脑机接口正成为脑科学、康复工程、生物医学工程及人机自动控制研究等领域的研究热点。虽然,近几年人们在脑机接口的研究方面已取得一些积极进展。但现有的脑机接口系统大多处于理论实验阶段。此外,这些实验设备体积庞大、系统分散、导线众多,而且数据只能做离线分析,导致脑机接口系统无法应用到实际生活中。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种通过模拟信号处理模块滤除脑电信号中的噪声,然后利用ARM处理器实时在线分析脑电信号,将脑电信号中的相关信息翻译成机器指令,通过无线方式发送至目标机器,电路结构简单,能够减小接口设备的体积,并且能够实现实时在线数据处理的脑机接口系统。本专利技术的目的是通过以下技术方案来实现的:一种脑机接口系统,包括脑电信号采集电极、模拟信号处理模块和数字信号处理模块;所述模拟信号处理模块包括:前置放大电路,用于放大脑电信号,滤除共模噪声;抗混叠滤波电路,用于滤除高频噪声的干扰;直流补偿电路,用于滤除脑电信号采集电极中引入的直流成份,提高前置放大电路的放大倍数,获得高的脑电信号信噪比;所述数字信号处理模块包括:模数转换器,将模拟信号转换成数字信号;微控制器,用于控制模数转换器;ARM处理器,用于将脑电信号中的相关信息转换为机器指令;无线传输电路,用于将机器指令发送至目标机;脑电信号采集电极将获取到的信号输入前置放大电路,前置放大电路的输出分别与抗混叠滤波电路和直流补偿电路相连,直流补偿电路的输出端连接前置放大电路;抗混叠滤波电路的输出端依次连接模数转换器、微控制器、ARM处理器和无线传输电路,微控制器的输出端还与模数转换器相连。进一步地,所述ARM处理器采用线性判别分析LDA算法实现脑电信号中的相关信息转换为机器指令。所述线性判别分析LDA算法包括以下步骤:S1、训练LDA分类器,包括以下子步骤:S11、采集脑电信号,分别采集多个通道的脑电信号作为输入信号;S12、对采集到的脑电信号分别进行moVEP(运动起始视觉诱发电,motion-onsetVisualEvokedPotential,moVEP)信号提取,并判断该moVEP信号是否为目标刺激产生的信号,若是则将moVEP信号存入目标缓存区,并执行步骤S13;否则将moVEP信号存入非目标缓存区,执行步骤S14;S13、判断目标刺激样本数是否采集完毕,若已经采集完毕则执行步骤S15,否则返回步骤S11;S14、判断非目标刺激样本数是否采集完毕,若已经采集完毕则执行步骤S15,否则返回步骤S11;S15、绘制目标刺激和非目标刺激的moVEP曲线图;S16、根据用户选择的时间窗分别提取目标刺激和非目标刺激的moVEP信号段;S17、将提取的moVEP信号段进行去基线、数字滤波和降采样处理;S18、对降采样处理后的moVEP信号进行叠加,然后将多个通道的moVEP信号首尾串接,形成最后的目标刺激和非目标刺激的特征向量;在进行脑机接口控制时,往往会选择多个通道的脑电数据来作为输入信号,这就要求在最后的特征提取过程中,需要将各个通道的脑电数据首尾连接起来,形成最后的特征向量,也就是“通道间串接”。S19、生成LDA分类器参数,并将LDA分类器参数存储于文本文档中;S2、将采集到的脑电信号通过投影向量投影到一维线性空间,然后利用步骤S1生成的LDA分类器对脑电信号进行分类,实现对脑电信号的特征提取和模式识别,将脑电信号中的相关信息转换为机器指令。进一步地,所述步骤S19中生成LDA分类器参数的具体实现方法为:利用投影向量将步骤S18得到的特征向量投影到一维线性空间,线性判别分析LDA算法所用的分类阈值w0是目标刺激和非目标刺激两类样本在经过向投影向量投影的一维线性空间的在分界点,本专利技术选取标刺激和非目标刺激两类样本在一维线性空间上投影后的均值作为标刺激和非目标刺激的分类阈值w0。LDA分类的思想是将高维空间的向量投影到一维线性空间中,然后在一维线性空间中对样本进行分类,所以在使用LDA分类器前,先要寻找出这个最佳的投影向量W,在本专利技术中,所述投影向量采用Fisher提出的最佳投影向量W,使样本在一维线性空间上的投影有最大的类间距离和最小的类内距离:W=(S1+S2)-1(u1-u2)(1)其中,u1和u2分别为目标刺激和非目标刺激所对应信号特征向量的均值,其定义如下:wi代表目标刺激和非目标刺激的类别,x是信号特征向量,Ni表示属于wi类的样本个数;S1和S2分别为目标刺激和非目标刺激的类内离散度,类内离散度是用来表征样本之间的离散信息的变量,其定义如下:本专利技术的有益效果是:本专利技术提出了一种脑机接口系统,该系统通过模拟信号处理模块滤除脑电信号中的噪声,提取较为纯净的脑电信号;然后在微控制器的控制下,将模拟信号转换为数字信号,并利用ARM处理器实时在线分析脑电信号,将脑电信号中的相关信息翻译成机器指令,通过无线方式发送至目标机器,实现脑电信号对外界设备的实时控制。本专利技术通过合理设计硬件电路和数字电路,能够获得高信噪比的脑电信号,电路结构简单,能够减小接口设备的体积,降低设备成本;并且能够实现实时在线数据处理,能够广泛应用于实际生活中。附图说明图1为本专利技术的脑机接口系统结构示意图;图2为本专利技术的训练LDA分类器的流程图;图3为本专利技术的脑机接口系统的刺激界面图;图4为本专利技术的LDA在线测试的流程图。具体实施方式本专利技术提出了一种脑机接口系统,该系统通过模拟电路,滤除信号中的噪声,提取较为纯净的脑电信号,然后在微控制器的控制下,将模拟信号转换为数字信号,然后利用ARM处理器,实时在线的分析出来脑电信号,并将信号中的相关信息翻译成机器指令,通过无线方式发送至目标机器,从而实现对外界设备的实时控制。下面结合附图进一步说明本专利技术的技术方案。如图1所示,脑机接口系统,包括脑电信号采集电极、模拟信号处理模块和数字信号处理模块;脑电信号采集电极用于采集脑电信号,可以为湿电极或者干电极;所述模拟信号处理模块包括:前置放大电路,用于放大脑电信号,滤除共模噪声;抗混叠滤波电路,用于滤除高频噪声的干扰;直流补偿电路,用于滤除脑电信号采集电极中引入的直流成份,提高前置放大电路的放大倍数,获得高的脑电信号信噪比;所述数字信号处理模块包括:模数转换器,将模拟信号转换成数字信号;微控制器,用于控制模数转换器;ARM处理器,用于将脑电信号中的相关信息转换为机器指令;无线传输电路,用于将机器指令发送至目标机;脑电信号采集电极将获取到的信号输入前置放大电路,前置放大电路的输出分别与抗混叠滤波电路和直流补偿电路相连,直流补偿电路的输出端连接前置放大电路;抗混叠滤波电路的输出端依次连接模数转换器、微控制器、ARM处理器和无线传输电路,微控制本文档来自技高网...
【技术保护点】
一种脑机接口系统,其特征在于,包括脑电信号采集电极、模拟信号处理模块和数字信号处理模块;所述模拟信号处理模块包括:前置放大电路,用于放大脑电信号,滤除共模噪声;抗混叠滤波电路,用于滤除高频噪声的干扰;直流补偿电路,用于滤除脑电信号采集电极中引入的直流成份,提高前置放大电路的放大倍数,获得高的脑电信号信噪比;所述数字信号处理模块包括:模数转换器,将模拟信号转换成数字信号;微控制器,用于控制模数转换器;ARM处理器,用于将脑电信号中的相关信息转换为机器指令;无线传输电路,用于将机器指令发送至目标机;脑电信号采集电极将获取到的信号输入前置放大电路,前置放大电路的输出分别与抗混叠滤波电路和直流补偿电路相连,直流补偿电路的输出端连接前置放大电路;抗混叠滤波电路的输出端依次连接模数转换器、微控制器、ARM处理器和无线传输电路,微控制器的输出端还与模数转换器相连。
【技术特征摘要】
1.一种脑机接口系统,其特征在于,包括脑电信号采集电极、模拟信号处理模块和数字信号处理模块;所述模拟信号处理模块包括:前置放大电路,用于放大脑电信号,滤除共模噪声;抗混叠滤波电路,用于滤除高频噪声的干扰;直流补偿电路,用于滤除脑电信号采集电极中引入的直流成份,提高前置放大电路的放大倍数,获得高的脑电信号信噪比;所述数字信号处理模块包括:模数转换器,将模拟信号转换成数字信号;微控制器,用于控制模数转换器;ARM处理器,用于将脑电信号中的相关信息转换为机器指令;无线传输电路,用于将机器指令发送至目标机;脑电信号采集电极将获取到的信号输入前置放大电路,前置放大电路的输出分别与抗混叠滤波电路和直流补偿电路相连,直流补偿电路的输出端连接前置放大电路;抗混叠滤波电路的输出端依次连接模数转换器、微控制器、ARM处理器和无线传输电路,微控制器的输出端还与模数转换器相连。2.根据权利要求1所述的脑机接口系统,其特征在于,所述ARM处理器采用线性判别分析LDA算法实现脑电信号中的相关信息转换为机器指令。3.根据权利要求2所述的脑机接口系统,其特征在于,所述线性判别分析LDA算法包括以下步骤:S1、训练LDA分类器,包括以下子步骤:S11、采集脑电信号,分别采集多个通道的脑电信号作为输入信号;S12、对采集到的脑电信号分别进行moVEP信号提取,并判断该moVEP信号是否为目标刺激产生的信号,若是则将moVEP信号存入目标缓存区,并执行步骤S13;否则将moVEP信号存入非目标缓存区,执行步骤S14;S13、判断目标刺激样本数是否采集完毕,若已经采集完毕则执行步骤S15,否则返回步骤S11;S14、判断非目标刺激样本数是否采集完毕,若已经采集完毕则执行步骤S15,否则返回步...
【专利技术属性】
技术研发人员:瞿倩,唐兴峰,刘鹏,刘铁军,郜东瑞,谢佳欣,任艳莉,何垣谛,
申请(专利权)人:电子科技大学,
类型:发明
国别省市:四川,51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。