本实用新型专利技术公开了一种触摸感应装置及其触控设备,所述触摸感应装置包括:基板;多个感应电极,位于所述基板上并且彼此绝缘隔开,所述多个感应电极一维排列以形成环形图案;以及多条引线,在所述环形图案的外环分别与所述多个感应电极电连接。其中,所述环形图案包括多个图案单元,每个图案单元由一个感应电极或者形状互补的多个感应电极形成。从而减小甚至消除了触控盲区和显示盲区,改善了触控效果和显示效果。
【技术实现步骤摘要】
触摸感应装置及其触控设备
本技术涉及触摸控制
,具体地,涉及一种触摸感应装置及其触控设备。
技术介绍
随着触摸屏的不断发展,电容式触摸屏在终端设备领域中逐渐被广泛地应用。在现有的电容式触控设备中,基于互电容或自电容获得触摸感应信号。在互电容触摸感应装置中,通过检测两个电极之间的电容变化,以获得触摸位置。在自电容式触摸感应装置中,通过检测电极与地之间的电容变化,以获得触摸位置。进一步地,根据电极的布局方式,电容式触摸感应装置可以分为双层结构、架桥结构和单层结构。单层结构具有工艺步骤少,价格低廉等优点,但缺点在于布线复杂,绑定区走线密集。在单层结构的触摸感应装置中,通过在玻璃表面形成具有一定图案的单层氧化铟锡(ITO),构成互电容阵列或者自电容阵列,从而实现触控设备的多点触摸。在单层结构的互电容阵列中,相邻的驱动电极和感应电极之间形成多个互电容。当手指触摸到电容屏时,触摸点附近的两个电极发生耦合,从而使这两个电极之间的电容值发生改变。在检测阶段,驱动电极接收触控设备发出的激励信号,触控设备中的控制电路能够通过对感应电极进行检测得到互电容阵列中各位置处的电容值的变化量,从而获知每个触摸点的坐标。在单层结构的自电容阵列中,每个感应电极与地之间形成自电容。当手指触摸到电容屏时,触摸点附近的感应电极与地之间的电容值发生改变。在检测阶段,触控设备中的控制电路能够通过对感应电极进行检测得到自电容阵列中各位置处的电容值的变化量,从而获知每个触摸点的坐标。自电容触控设备的结构简单,工艺难度低,成本低廉,因此在低端产品中获得了广泛的应用。近年来,业界亦致力于将自电容触控设备应用可穿戴的电子设备,使其逐步被应用于居家、医疗以及运动休闲的环境。相较于用于一般行动装置内的触控设备,穿戴式电子设备内的触控设备通常会具有较小以及圆弧轮廓的触控区域,致使两者的感测电极的设计布局会有所不同。现有技术中,一般多采用在圆形触控区域设置多维阵列形式的多个形状为条形或多边形的感应电极,感应电极的形状为条形时,由于条形无法完全覆盖圆弧轮廓的触控区域,使得实际检测效果较差,存在触控盲区;感应电极为多边形时,由于用于连接感应电极的走线也设置于圆形触控区域内,尤其,在具有显示模组的触控设备中,触控区域同时也为显示区域,经过显示区域的走线本身构成了显示盲区,使得触控设备的显示质量大大下降。
技术实现思路
为了解决上述现有技术存在的问题,本技术提供一种触摸感应装置及其触控设备,在减小触控盲区和显示盲区的同时改善了显示效果。根据本技术的第一方面,提供一种触摸感应装置,包括:基板;多个感应电极,位于所述基板上并且彼此绝缘隔开,所述多个感应电极一维排列以形成环形图案;以及多条引线,在所述环形图案的外环分别与所述多个感应电极电连接。优选地,所述环形图案包括多个图案单元,每个图案单元由一个感应电极或者形状互补的多个感应电极形成。优选地,所述环形图案为圆环形图案,所述图案单元为扇环,各所述图案单元大小相同。优选地,每个扇环由两个感应电极形成,所述两个感应电极的形状设置成沿扇环的一条对角线分隔所述扇环。优选地,每个扇环由三个感应电极形成,所述三个感应电极中位于中间的感应电极的形状为以扇环的内环为底边并且以扇环的外环中点为顶点的三边形,位于两侧的感应电极的形状设置成与位于中间的感应电极的形状互补。优选地,所述环形图案为等边多边形环形图案,所述图案单元为梯形。优选地,其中,各所述图案单元的形状和大小相同。优选地,还包括至少一个附加感应电极,所述至少一个附加感应电极位于所述基板上,在所述环形图案的内环的内侧,且与所述感应电极彼此绝缘隔开。优选地,所述附加感应电极的形状包括选自圆形、等边多边形中的任意一种。优选地,所述引线在所述环形图案的外环分别与所述附加感应电极电连接。根据本技术的第二方面,提供一种触控设备,包括触摸控制电路、绑定区以及如上述任一项所述的触摸感应装置,所述触摸感应装置的所述引线连接至所述绑定区,所述绑定区用于将所述引线与多个信号通道对应连接,并将所述多个信号通道连接至所述触摸控制电路。采用本技术的技术方案后,由于感应电极可全面覆盖整个触控区域,因而避免了触控盲区的出现,且引线在所述环形图案的外环分别与所述多个感应电极电连接,避免了由于引线设置于感应电极之间带来的显示盲区。附图说明通过以下参照附图对技术实施例的描述,本技术的上述以及其他目的、特征和优点将更为清楚,在附图中:图1示出本技术第一实施例的触摸感应装置的示意性结构图。图2示出本技术第二实施例的触摸感应装置的示意性结构图。图3示出本技术第三实施例的触摸感应装置的示意性结构图。图4示出本技术第四实施例的触摸感应装置的示意性结构图。图5示出本技术第五实施例的触摸感应装置的示意性结构图。图6示出本技术第六实施例的触摸感应装置的示意性结构图。图7示出本技术第七实施例的触摸感应装置的示意性结构图。图8示出本技术第八实施例的触控设备的结构示意图。具体实施方式以下基于实施例对本技术进行描述,但是本技术并不仅仅限于这些实施例。在下文对本技术实施例的细节描述中,详尽描述了一些特定的细节部分,对本领域技术人员来说没有这些细节部分的描述也可以完全理解本技术。为了避免混淆本技术的实质,公知的方法、过程、流程没有详细叙述。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。附图中的流程图、框图图示了本技术的实施例的系统、方法、电路的可能的体系框架、功能和操作,附图的方框以及方框顺序只是用来更好的图示实施例的过程和步骤,而不应以此作为对技术本身的限制。下面,参照附图对本技术进行详细说明。图1示出本技术第一实施例的触摸感应装置的示意性结构图。该触摸感应装置包括基板110和形成在基板110上的多个彼此绝缘的感应电极120。基板110可以是绝缘基板,例如玻璃基板或氧化层。该玻璃基板例如是液晶显示装置表面的基板,使得触摸感应装置可以作为相对独立的部件与液晶显示装置组装在一起。该氧化层例如是液晶显示装置中的层间介质层,使得所述触摸感应装置可以嵌入液晶显示装置中。感应电极120可以由导电材料经图案化而形成。导电材料包括但不限于氧化铟锡(ITO)、纳米银、石墨烯等等。在应用于触控屏时,感应电极120优选由ITO形成,以避免感应电极120妨碍图像的显示。如图1中的虚线部分所示,所述多个感应电极120沿环向排列形成一维环形图案,所述环形图案包括多个图案单元。在本实施例中,所述环形图案例如为圆环,所述图案单元的形状为扇环,每个所述图案单元由一个感应电极120形成。优选地,各所述图案单元的形状和大小相同,对应地,各所述感应电极120大小相同。由此可以保证数据采集的均匀性,提高该触摸感应装置的识别精度。本领域技术人员应清楚,所述环形图案中图案单元的数量,以及所述环形图案内、外径的大小不限于图1中所示出情况,可以根据需要而定。进一步地,该触摸感应装置还包括多条引线130,优选地,所述引线130在所述环形图案的外环分别与所述多个感应电极120电连接。和现有技术相比,本文档来自技高网...
【技术保护点】
一种触摸感应装置,包括:基板;多个感应电极,位于所述基板上并且彼此绝缘隔开,所述多个感应电极一维排列以形成环形图案;以及多条引线,在所述环形图案的外环分别与所述多个感应电极电连接。
【技术特征摘要】
1.一种触摸感应装置,包括:基板;多个感应电极,位于所述基板上并且彼此绝缘隔开,所述多个感应电极一维排列以形成环形图案;以及多条引线,在所述环形图案的外环分别与所述多个感应电极电连接。2.根据权利要求1所述的触摸感应装置,其中,所述环形图案包括多个图案单元,每个图案单元由一个感应电极或者形状互补的多个感应电极形成。3.根据权利要求2所述的触摸感应装置,其中,所述环形图案为圆环形图案,所述图案单元为扇环,各所述图案单元大小相同。4.根据权利要求3所述的触摸感应装置,其中,每个扇环由两个感应电极形成,所述两个感应电极的形状设置成沿扇环的一条对角线分隔所述扇环。5.根据权利要求3所述的触摸感应装置,其中,每个扇环由三个感应电极形成,所述三个感应电极中位于中间的感应电极的形状为以扇环的内环为底边并且以扇环的外环中点为顶点的三边形,位于两侧的感应电极的形状设置成与位于中间的感应电极...
【专利技术属性】
技术研发人员:王永刚,申丹丹,杨谢威,章军富,李建业,
申请(专利权)人:北京集创北方科技股份有限公司,
类型:新型
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。