本发明专利技术公开了一种多策略粮虫视觉检测方法,一、获取所述粮虫图像;二、对粮虫图像进行奇异值分解得到图像数据矩阵
【技术实现步骤摘要】
多策略粮虫视觉检测方法
本专利技术涉及粮虫视觉检测方法,尤其是涉及多策略粮虫视觉检测方法。
技术介绍
粮虫危害是粮食储藏中较为严重的问题之一,粮虫准确检测是进行粮虫综合防治的一种有效手段。粮虫检测方法有扦样法、诱集法、声音识别法、近红外法和视觉检测法等。自从美国学者Zayas采用视觉检测技术对散装小麦仓中的谷蠹成虫进行离线研究,为粮虫的快速检测和分类开辟了新途径。视觉检测法具有准确度高、劳动量小、粮虫图像可视化、不局限于粮库的分散性和地域的限制、便于同粮库现有软件系统集成等优点,近年来一直是粮虫检测领域的研究热点,也是粮虫检测的主要技术手段。准确识别是粮虫准确检测的核心内容。粮虫种类多、体形小且形态结构较复杂使得实现粮虫检测成为最困难的经典问题。学者们针对粮虫视觉检测方法围绕特征获取、粮虫识别(粮虫分类)和虫群密度估计等领域开展了大量而深入的研究并取得若干富有成效的结果。例如廉飞宇等分别利用图像色彩块、HVS彩色图像差值技术和运动目标检测实现粮虫视频图像序列的静态粮虫图像分割提取。又如徐昉等提出基于图像识别的粮虫在线检测新方法,将机器视觉与模式识别技术相结合实现粮虫检测,利用安装有CCD镜头和称重等传感器的特殊取样装置抽取粮食样本并实现粮虫检测。再如张红梅等也对BP神经网络进行改进并应用于粮虫识别,既有较强的自适应性还对有噪声、残缺的粮虫图像有一定的识别效果。近年来粮虫视觉检测虽取得一些进展,但急切需要一种高效便捷的计算机测虫方法,旨在利用开发工具和图像处理算法的优点,来实现对粮虫的高效准确的检测。
技术实现思路
本专利技术目的在于提供一种高效准确的多策略粮虫视觉检测方法。为实现上述目的,本专利技术采取下述技术方案:本专利技术所述的多策略粮虫视觉检测方法,包括下述步骤;第一步、通过取样器将藏在粮堆内部的活体粮虫分拣出来,然后通过视觉设备将所述活体粮虫拍摄以获取所述粮虫图像;第二步、对所述粮虫图像进行奇异值分解得到图像数据矩阵,其中和分别是和的正交矩阵,为的元素为非负的对角矩阵,为阈值;将值全置为0形成新的,然后与和重建图像数据矩阵;最后通过对图像数据矩阵求差,以增强图像中的粮虫信息;第三步、采用symN小波基对所述粮虫图像进行2层小波分解和重构;根据小波分解子带分解系数相关性的特性,对大于阈值的高频系数倍乘4,低频系数缩小为原值的;即:其中,为新低频子带系数;为新水平高频子带系数;为新垂直高频子带系数;为对角线方向上的新高频子带系数;为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;对于图像来说,其离散二维小波多尺度分解算法如下:设原始图像为,dwt2为二维离散小波变换;小波分解为:其中,为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;为待分解粮虫图像;其离散二维小波多尺度重建算法如下:其中,新低频子带系数;为新水平高频子带系数;为新垂直高频子带系数;为对角线方向上的新高频子带系数;为重构粮虫图像;将新细节部分高频子带系数和新的低频子带系数根据上式进行重构得到需要的高分辨率图像;第四步、采用Otsu方法对粮虫图像进行二值化;对于一幅具有粮虫图像,通过图像的总平均灰度级,目标的平均灰度级与背景的平均灰度级以及其分别所占图像面积的比例,依照类间方差实现目标和背景分割,完成图像二值化的差别;第五步、由于粮虫属于弱小目标,粮虫图像二值化后易使粮虫区域更弱化甚至本来完整的粮虫断裂为两部分,必须借助膨胀算法扩大或桥接断裂的粮虫图像区域缝隙;为抑制复合干扰源下凸显粮虫目标来提高粮虫视觉检测效果,构造结构元素,同时使用水平方向和垂直方向的线性结构元素对二值图像膨胀运算,实现粮虫目标增强进而提高粮虫检测识别率;第六步、基于Blob算法对二值化后的粮虫图像进行Blob连通域分析,从而达到粮虫检测目的;Blob算法实现如下:(1)采用面积参数度量目标区域大小;对于斑块区域,定义为该区域中像素点的数目,即:,式中:为像素坐标值,为该点的像素值,黑点为0,白点为1;(2)采用周长参数度量目标区域特征;对于斑块区域,定义为斑块区域边界上像素点的个数;即:,式中:为像素坐标值,为该点的像素值(黑点为0,白点为1)。本专利技术解决了传统人工储粮活虫检测非常耗时且效率很低的问题,通过面积参数和周长参数进行快速、准确、无损自动检测粮虫;同时解决了现有粮虫视觉检测方法无法克服粮仓复合环境影响的问题,实现了既能准确检测粮虫数目又能精确标记粮虫位置目的。附图说明图1是本专利技术的流程框图。具体实施方式下面结合附图对本专利技术的实施例作详细说明,本实施例在以本专利技术技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本专利技术的保护范围不限于下述实施例。如图1所示,本专利技术所述的多策略粮虫视觉检测方法,由采集粮虫图像、SVD增强(奇异值分解)、小波重构、二值化和Blob检测步骤组成;首先SVD能自适应调整噪声方差减少光谱反射和阴影的影响从而达到显著增强粮虫信息;然后引入小波变换对粮虫图像进行增强,勾勒出粮虫的大致轮廓以呈现粮虫的细节部分;其次利用OTSU法对粮虫图像进行二值化处理提取粮虫弱小目标进而提高粮虫检测准确度;最后通过Blob算法快速准确提取出粮虫图像中存在的连通区域并据此计算粮连通域的面积参数与周长参数,最终实现粮虫目标区域定位与数量检测。具体步骤如下:第一步、通过取样器将藏在粮堆内部的活体粮虫分拣出来,然后通过视觉设备将所述活体粮虫拍摄以获取所述粮虫图像,粮虫图像分辨率设定为640×853;第二步、SVD增强粮虫图像预处理既是粮虫视觉检测系统的首要步骤也是难点之一;在粮虫图像采集过程中,由于孤立点、光照不均匀等因素造成图像质量不高。有必要通过图像增强来提取感兴趣的信息。奇异值分解是最有效分析矩阵的数值分析工具,是一种将矩阵对角化的数值分析方法。对于任意一个的矩阵,都可分解成3个矩阵之积:其中和分别为和的酉矩阵,即;为元素为非负的对角矩阵,其对角线上的元素满足:,其中为非零对角元的个数,即矩阵的秩,它等于非负奇异值的个数。就叫做矩阵的奇异值,是特征值的平方根。数字图像数据本质是图像坐标及灰度值的离散化,即数字图像数据矩阵;对其数据矩阵进行奇异值分解,奇异值向量构成的矩阵保留了其代数本质;矩阵的奇异值特征向具有稳定性,它能确保奇异值对矩阵元素的扰动不敏感;此外奇异值对应于图像的亮度特征,表征了图像的几何特征,奇异值所表现的是图像的内蕴特性而非视觉特性;另一方面针对粮虫图像存在大量弱纹理和纹理相似区域的特点,反映了图像矩阵元素之间的关系。可滤除高频图像噪声,去除了噪声的影响,保证了特征抽取的稳定性,SVD能显著增强图像中的纹理信息;因此,可将奇异值向量作为图像增强的代数特征。本专利技术将值全置为0形成新的,然后与和重建图像矩阵;最后通过对图像数据矩阵求差,这样能省去繁琐数学变换而自适应调整噪声方差来显著增强图像中的粮虫信息。第三步、小波重构小波变换能同时处理信号的低频长时特性和高频短时特性,即低频处具有较高频率分辨率和较低时间分辨率,相反高频处具有较高的时间分辨率和较低的频率分辨率。因此粮虫图像增强处理可依据频率子带的不同特征分别处理从而达到增强对比本文档来自技高网...
【技术保护点】
一种多策略粮虫视觉检测方法,其特征在于:包括下述步骤;第一步、通过取样器将藏在粮堆内部的活体粮虫分拣出来,然后通过视觉设备将所述活体粮虫拍摄以获取所述粮虫图像;第二步、对所述粮虫图像进行奇异值分解得到图像数据矩阵
【技术特征摘要】
1.一种多策略粮虫视觉检测方法,其特征在于:包括下述步骤;第一步、通过取样器将藏在粮堆内部的活体粮虫分拣出来,然后通过视觉设备将所述活体粮虫拍摄以获取所述粮虫图像;第二步、对所述粮虫图像进行奇异值分解得到图像数据矩阵,其中和分别是和的正交矩阵,为的元素为非负的对角矩阵,为阈值;将值全置为0形成新的,然后与和重建图像数据矩阵;最后通过对图像数据矩阵求差,以增强图像中的粮虫信息;第三步、采用symN小波基对所述粮虫图像进行2层小波分解和重构;根据小波分解子带分解系数相关性的特性,对大于阈值的高频系数倍乘4,低频系数缩小为原值的;即:其中,为新低频子带系数;为新水平高频子带系数;为新垂直高频子带系数;为对角线方向上的新高频子带系数;为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;对于图像来说,其离散二维小波多尺度分解算法如下:设原始图像为,dwt2为二维离散小波变换;小波分解为:其中,为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;为待分解粮虫图像;其离散二维小波多尺度重建算法如下:其中,新低频子带系数;为新水平高频子带系数;为新垂直高频子带...
【专利技术属性】
技术研发人员:王贵财,靳小波,费选,李磊,魏蔚,
申请(专利权)人:河南工业大学,
类型:发明
国别省市:河南,41
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。