本发明专利技术提供了一种应用于自适应驾座的人脸识别方法,步骤为:加载人脸身份特征头像库;创建人脸识别模型,训练已加载的人脸识别库;在摄像头中获取视频图像;用级联分类器检测视频图像中是否包括人脸特征信息;若包含则将人脸部分提取出来,生成人脸图像;将所提取的特征头像进行尺寸归一化,并进行直方图均衡化处理;利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,进行特征提取;将提取的特征放在人脸识别库中进行比对,若相似度高于预设阈值,则输出预测的身份标签,确认乘客身份,启动自适应驾座;否则询问是否录入人脸身份。本发明专利技术应用于无人车辅助驾驶系统,配合自适应驾座,能准确、高效、快捷进行人脸识别。
【技术实现步骤摘要】
一种应用于自适应驾座的人脸识别方法
本专利技术涉及人脸识别领域和车辆辅助驾驶系统领域,具体涉及一种应用于自适应驾座的人脸识别方法。
技术介绍
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关图像处理技术,通常也叫做人像识别、面部识别。目前人脸识别技术应用越来越普遍,但是现有技术中的人脸识别技术还存在着技术缺陷,如受环境影响大、容易被照片欺骗、不适合人脸的自然变化,造成识别率不够高等问题。人脸识别依赖于人脸特征的提取。在人脸识别的过程中,主要包括人脸图像的匹配和识别过程,就是将提取到的待识别的人脸特征与已得到的存储在数据库中的人脸特征模版进行匹配,根据相似程度对人脸图像的身份信息进行判断。因此,能够提取到准确而丰富的人脸特征对于人脸识别的结果具有重要影响。
技术实现思路
为了解决现有技术所存在的问题,本专利技术提供一种人脸识别方法,应用于无人车辅助驾驶系统,能高效、快捷识别出乘客的身份信息。本专利技术应用于自适应驾座的人脸识别方法,包括以下步骤:S1:加载人脸身份特征头像库;S2:创建人脸识别模型,训练已加载的人脸识别库;S3:在摄像头中获取视频图像;S4:用级联分类器检测视频图像中是否包括人脸特征信息;S5:若不存在人脸特征信息,则返回步骤S3;若存在人脸特征信息,则将人脸部分提取出来,生成人脸图像,作为特征头像;S6:将所提取的特征头像进行尺寸归一化;S7:对归一化后的特征头像进行直方图均衡化处理;S8:利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,进行特征提取;S9:将提取的特征放在人脸识别库中进行比对,若相似度高于预设阈值,则输出预测的身份标签,确认乘客身份,启动自适应驾座;否则,若相似度低于预设阈值,询问是否录入人脸身份;S10:若不录入人脸身份,则返回步骤S3;若需要录入人脸身份,则对经过处理的人脸头像进行尺寸归一化,并保存至人脸身份特征头像库。与现有技术相比,本专利技术具有如下优点和有益效果:1、从摄像头中获取视频图像时,在视频中获取每秒60帧的视频流,提取RGB三通道图像,计算统计各个像素点分布的情况,大致将像素点区域范围分类,并进行比对,根据相似度适当提取其中的几帧作为样本图像。与传统的将每一帧都作为样本图像进行处理相比,更加高效、快捷。2、提取特征前,首先将人脸图像经过直方图均衡化处理,使灰度图中各灰度级分布均匀;然后利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,可以在简单的振幅谱中提取特征,计算方便,提高效率。3、应用于无人车辅助驾驶系统,配合自适应驾座,能准确进行人脸识别。当乘客的身份得到确认时,启动自适应驾座,调整驾座的位置及姿势,以适应乘客的身形以及坐姿,为乘客提供较舒适的体验。4、借助光照传感器,接收光照传感器传来的光照强度值以调整视频图像的白平衡、对比度以及整体亮度,进一步的降低外部光照对识别的影响。附图说明图1是本专利技术的人脸识别结构示意图;图2是本专利技术的人脸识别流程示意图。具体实施方式下面结合说明书附图和实施例对本专利技术做进一步详细的描述,但本专利技术的实施方式不限于此。实施例参见图1,本专利技术应用于自适应驾座,在结构上包括依次连接的视频获取模块101、人脸识别模块102、上位机控制模块103和录入库功能模块104,其中视频获取模块采用摄像头;如图2所示,其人脸识别过程具体包括以下步骤:S1:加载人脸身份特征头像库;S2:创建人脸识别模型,训练已加载的人脸识别库;可通过IO设备或蓝牙、WIFI等发出指令,将捕捉到的人脸录入人脸识别库中,并添加一个身份标签号。此外,还可记忆此时座椅的位置及姿势,并将位置及姿势封装至人脸识别库中。S3:在摄像头中获取视频图像;本步骤需要从视频流中获取视频图像,计算统计各个像素点分布的情况,大致将像素点区域范围分类。获取视频图像时,是从视频流中提取RGB三通道图像,拥有24位的颜色模式。而提取特征头像时,则以灰度模式进行提取,只有8位颜色深度的图像,无需再经过对图像进行灰度处理,减少了计算量,提高检测效率。在摄像头中提取视频图像,可以这样操作:摄像头每一秒获取到60帧的视频资源,组成视频流,将视频流中的图像如数提取,用事先定义好的Mat类向量承载,比对60张图像,根据比对结果进行提取:当所有图像相似度达到93%以上时,仅提取第1帧、第30帧及第60帧作为样本图像进入后续处理;当不是所有图像的相似度均达到93%时,选取其中相似度达到98%或以上的帧数,并提取其中一帧作为样本图像,剩余相似度低于98%的图像都被提取为样本图像进入后续处理。当某一秒的图像出现失真现象时,对每一帧进行轮廓提取,实际操作为掏空内部点,如果原图中有一点为某一种颜色,且它的8个相邻点都是这种颜色时(此时该点是内部点),则将该点删除。并将所有帧数图像中相同位置的像素点的数值进行自适应加权平均:求取各组数据的均值和标准差,计算各组数据和标准差之间的模糊贴近度,根据模糊贴近度分配权重,得出相对权重。并根据相对权重计算加权均值。将所有的加权均值放入Mat类向量中,得出平均向量作为样本图像进入后续处理。本专利技术可在摄像头旁添加光照传感器,以精确测出摄像头所接收到的光照强度,利用测得的光照强度值,对实时接收到的视频图像在一定范围内调整,调整的参数包括:白平衡、对比度以及整体亮度。S4:用级联分类器检测视频图像中是否包括人脸特征信息;S5:若不存在人脸特征信息,则返回步骤S3;若存在人脸特征信息,则将人脸部分提取出来,生成人脸图像,作为特征头像;本实施例以灰度模式提取8位颜色深度的图像。S6:将所提取的特征头像进行尺寸归一化;可将特征头像的尺寸归一化为1*1的图像。S7:进行直方图均衡化处理,减小室外光照对识别率的影响;其中,直方图均衡化处理的过程如下:-统计原始图像的所有灰度级和各个灰度级的像素数;-计算原始图像的直方图与累积直方图;-计算局部对比度实现均衡化并得出新的直方图。S8:利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,进行特征提取。可在变换域(即频率域)中实现图像增强,步骤如下:首先计算人脸图像的傅里叶变换S(u,v),将傅里叶变换S(u,v)与一个预先设计的转移函数Y(u,v)相乘,再将相乘结果H(u,v)傅里叶反变换得到增强后的图像。转移函数Y需要根据想要的增强效果进行设计,例如要实现平滑滤波,则使用n阶BLPF转移函数Y(u,v)=1/1+[D(u,v)/Do]2n,其中Do为截断频率。S9:将提取的特征放在人脸识别库中进行比对,人脸识别库设在人脸识别模块102中,若相似度高于预设阈值,则输出预测的身份标签,确认乘客身份,启动自适应驾座;否则,若相似度低于预设阈值,询问是否录入人脸身份。S10:若返回否,即不录入人脸身份,则返回步骤S3;若返回是,即需要录入人脸身份,则对经过处理的人脸头像进行尺寸归一化,并保存至人脸身份特征头像库,所述人脸身份特征头像库设置于录入库功能模块104中。在将经过处理的人脸头像保存至人脸身份特征头像库前,将经过处理的人脸头像放入人脸身份特征头像库中进行比对,若出现相似度高于阈值时,放弃将此头像录入本文档来自技高网...
【技术保护点】
一种应用于自适应驾座的人脸识别方法,其特征在于,包括以下步骤:S1:加载人脸身份特征头像库;S2:创建人脸识别模型,训练已加载的人脸识别库;S3:在摄像头中获取视频图像;S4:用级联分类器检测视频图像中是否包括人脸特征信息;S5:若不存在人脸特征信息,则返回步骤S3;若存在人脸特征信息,则将人脸部分提取出来,生成人脸图像,作为特征头像;S6:将所提取的特征头像进行尺寸归一化;S7:对归一化后的特征头像进行直方图均衡化处理;S8:利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,进行特征提取;S9:将提取的特征放在人脸识别库中进行比对,若相似度高于预设阈值,则输出预测的身份标签,确认乘客身份,启动自适应驾座;否则,若相似度低于预设阈值,询问是否录入人脸身份;S10:若不录入人脸身份,则返回步骤S3;若需要录入人脸身份,则对经过处理的人脸头像进行尺寸归一化,并保存至人脸身份特征头像库。
【技术特征摘要】
1.一种应用于自适应驾座的人脸识别方法,其特征在于,包括以下步骤:S1:加载人脸身份特征头像库;S2:创建人脸识别模型,训练已加载的人脸识别库;S3:在摄像头中获取视频图像;S4:用级联分类器检测视频图像中是否包括人脸特征信息;S5:若不存在人脸特征信息,则返回步骤S3;若存在人脸特征信息,则将人脸部分提取出来,生成人脸图像,作为特征头像;S6:将所提取的特征头像进行尺寸归一化;S7:对归一化后的特征头像进行直方图均衡化处理;S8:利用二维离散快速傅里叶变换将人脸图像从空间域变换到频率域,进行特征提取;S9:将提取的特征放在人脸识别库中进行比对,若相似度高于预设阈值,则输出预测的身份标签,确认乘客身份,启动自适应驾座;否则,若相似度低于预设阈值,询问是否录入人脸身份;S10:若不录入人脸身份,则返回步骤S3;若需要录入人脸身份,则对经过处理的人脸头像进行尺寸归一化,并保存至人脸身份特征头像库。2.根据权利要求1所述的应用于自适应驾座的人脸识别方法,其特征在于,所述步骤S3获取视频图像的过程为:摄像头每一秒获取到60帧的视频资源,组成视频流,将视频流中的图像如数提取,用事先定义好的Mat类向量承载,比对60张图像,根据比对结果进行提取:当所有图像相似度达到93%以上时,仅提取第1帧、第30帧及第60帧作为样本图像进入后续处理;当不是所有图像的相似度均达到93%时,选取其中相似度达到98%或以上的帧数,并提取其中一帧作为样本图像,剩余相似度低于98%的图像都被提取为样本...
【专利技术属性】
技术研发人员:黄文恺,朱静,詹欣国,陈文达,何俊峰,江吉昌,韩晓英,吴羽,伍冯洁,
申请(专利权)人:广州大学,
类型:发明
国别省市:广东,44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。