PACu-AS吸附微波辅助降解制备窄分子量分布壳聚寡糖的方法。采用模板配位控制长度/催化氧化裂解方式,同时用微波照射快速降解制备窄分子量分布壳聚寡糖。其技术方案是以食用乙酸、柠檬酸、酒石酸、乳酸溶解高分子壳聚糖固体成为溶液,将化学合成并粉碎过筛的反式草酰胺/硫氰酸根桥连铜(Ⅱ)固体金属配位高聚物颗粒(简称:PACu-AS)微粒搅拌下加入上述溶液中,调节pH值使壳聚糖中的氨基与PACu-AS颗粒表面裸露金属离子有弱配位键形成,室温加入氧化剂混合均匀,微波照射降解,过滤分离出降解液,低温或室温浓缩得到固体粉末产品。该方法可迅速简捷得到数均分子量及分子量分布范围符合特有生物生理活性、医疗功能食品要求、提高动植物免疫等功效的、有着广泛用途的低聚寡糖。
【技术实现步骤摘要】
本专利技术涉及一种PACu-AS吸附微波辅助降解制备窄分子量分布壳聚寡糖的方法。
技术介绍
本专利技术涉及一种利用壳聚糖中的氨基与化学合成的反式草酰胺/硫氰酸根桥连铜(II)固体金属配位高聚物颗粒(简称PACu-AS)表面裸露金属离子通过弱配位键结合,经加入氧化剂催化氧化并在微波照射下降解、过滤、及其他后处理制备富含窄分子量分布寡聚糖的方法。更具体地说是用化学合成出反式草酰胺/硫氰酸根桥连铜(II)固体金属配位高聚物颗粒作为吸附壳聚糖的模板吸附基质,经研磨粉化达到一定粒度。将弱酸性不溶解的PACu-AS加入到溶于含0.5%醋酸的生物甲壳素脱乙酰化后的壳聚糖水溶液中,以PACu-AS颗粒表面为基质,使壳聚糖中的部分氨基与裸露于PACu-AS颗粒表面、有空配位点(或取代水分子)的金属离子配位,即通过壳聚糖氨基与PACu-AS颗粒表面的金属形成弱配位键的方式将壳聚糖高聚物吸附于细小的PACu-AS表面。通过PACu-AS颗粒表面裸露金属离子之间的距离,即金属离子在PACu-AS基质表面的均匀分布密度。低温加入可用金属配合物催化氧化、且温度敏感型氧化剂,搅拌均匀,微波照射启动催化氧化反应,在PACu-AS基质表面的所有金属离子位置附近迅速裂解壳聚糖高分子链。PACu-AS颗粒表面各裸露金属离子之间的距离及均匀分布密度大小将决定降解后寡糖数均分子量的大小与分子量分布范围。由于所用PACu-AS为弱酸性不溶物,可通过过滤将产物与催化基质分离,再经必要后处理得到数均分子量及分子量分布范围符合特有生物生理活性、医疗保健功能要求、提高动植物免疫等功效等,有着广泛用途的低聚寡糖。同时PACu-AS可反复使用。目前,国内外壳聚糖降解制备低聚水溶性壳聚糖的方法主要有酶降解法、氧化降解法、酸降解法,其次还有微波法、超声波法、辐射法等。现有的酶降解法主要依赖于壳聚糖酶、脂肪酶、溶菌酶以及其他非专一性水解酶,尽管可专一切断糖苷键,但在对整条高分子链进行均匀切割以得到均一寡糖方面也无能为力。其得到寡糖均一性的机理在于酶分子在壳聚糖溶液中的分布,影响因素很多。据报道这种方法能得到一定收率的六至八糖,产品在食品及医药方面(抗癌药物)用途广泛,但在选择合适的酶种以适合工业化大规模生产和有效祛除降解后产物中混杂酶的工艺上尚存在困难,即缺乏以经济成本进行大规模工业化生产的可能;而现已用于壳聚糖产品的工业化生产(如“鲟之宝”胶囊-上海伟康生物制品公司生产等)的氧化降解法,包括H2O2氧化法、H2O2-NaClO2法、H2O2-HCl法、和其他一些氧化降解法。氧化法在条件苛刻的条件下也可得到分子量在1000左右的较窄分子量分布的寡糖,但这时伴随降解产生副产物单糖的比例大大增加(1∶1,或更多)。另外,这种方法对壳聚糖降解存在的最大问题是在降解过程中引入了各种反应试剂,使得对其降解副反应的控制以及在降解产物的分离纯化方面增加了难度;酸降解法,它包括HCl降解法、酸-亚硝酸盐法、过醋酸法、及其他酸解法。其中用HCl降解法得到的低聚水溶性壳聚糖-盐酸盐的分子量分布比较宽,但有报道用酸-亚硝酸盐法可制备相对略高含量的12至19(分子量在2000-3000,分布相对狭窄)低聚水溶性壳聚糖。酸解法和单纯的氧化降解法都是非特异性的降解过程,其降解过程较难控制,虽然已先后用于工业化生产,并且各种分子量范围的壳聚糖产品都能得到,但要想得到特定分子量范围且具有较高收率及能广泛应用的壳聚糖产品则比较困难;其他降解法如微波法、超声波法、辐射法等,也可以得到低聚水溶性壳聚糖,但仍然属于非特异性降解过程,目前尚属基础研究探索阶段。由此可见所有非特异性降解过程降解得到的产物都有同一个无法解决的难题平均分子量分布宽。
技术实现思路
本专利技术的目的是提供一种PACu-AS吸附微波辅助降解制备窄分子量分布壳聚寡糖的方法。这种方法避开目前工业生产中采用的以非特异性降解过程为机制的制备低聚水溶性壳聚糖过程所表现出的种种弊端和不足,提供一种人为制造特异性降解的氛围。通过过滤即可将产物分离出,使制备获取窄分子量分布寡糖之目的终得以实现。本专利技术的目的是通过以下技术方案来实现的.本专利技术利用化学合成的反式草酰胺/硫氰酸根桥连铜(II)固体金属配位高聚物颗粒(PACu-AS)作为吸附壳聚糖的模板吸附基质,将溶于弱酸性溶液的高分子量壳聚糖吸附与基质表面,调节体系的pH值,使壳聚糖中的氨基与基质表面裸露金属离子配位结合,加入氧化剂,使用微波输出为10-2500(W)、工作频率为2450(MHz)的微波发生设备,pH值为3-7的条件下裂解,在0.5分钟至72小时时间范围降解壳聚糖,得到窄分子量分布寡糖。.方案中的方法,其中使用的原料壳聚糖是从水产养殖、海洋生物中的虾、蟹壳及昆虫、藻类和细菌生成的主要提取物之一甲壳质脱乙酰化的产物。.方案中的方法,其中用作基质的固体金属配位高分子化合物PACu-AS制备方法如下1.在2500cm3圆底烧瓶中加0.5-1.0mol乙二胺的甲醇溶液50cm3,置于冰浴中,边搅拌边向其中逐滴加入1.0-2.5mol草酸二乙酯的甲醇溶液50cm3,加热80℃,搅拌半小时,过滤,真空干燥得白色粉末(中间体I)。2.将1.0-5.0g中间体I加入2500cm3反应釜中,加200cm3水,搅拌均匀,逐批加入将新制的Cu(OH)2与500cm3水的悬浊液,搅拌2小时,抽滤,将所得蓝紫色滤液浓缩,自然蒸发,得蓝紫色晶体(中间体II)。3.将2-10g硫酸铜溶于500cm3水中,搅拌条件下缓慢加入1.0-15g中间体II与250cm3水的溶液,得兰色沉淀,搅拌至完全溶解,再缓慢加入1.0-20.0gNH4CNS与100cm3水的溶液,搅拌,至沉淀完全,吸滤,水洗3次,尽可能吸干,滤饼再溶于250cm3浓氨水中,过滤,浓缩,得到蓝绿色晶体产物PACu-AS。.方案中的制备方法,其中涉及合成的所有原料与试剂为市售工业纯或纯度更高的纯度级别。.方案中的制备方法,得到的反式草酰胺/硫氰酸根桥连铜(II)固体金属配位高聚物晶体(PACu-AS)再经干燥、研磨收集10-250目的颗粒,干燥后备用。.方案和之一所述的方法,其特征在于将0.1-100克干燥的壳聚糖加入到0.1-10%(重量比)的10-400cm3醋酸水溶液中,在0-100℃的温度下,经过20分钟-48小时使高分子量的壳聚糖溶解。.方案-的方法,其特征在于其中PACu-AS在加入壳聚糖醋酸水溶液时,加入量为1-80克。.方案之一所述的方法,其特征在于向体系中加入壳聚糖用量的0.01-25%(重量比)的医用过氧化氢(市售30%,重量比)氧化剂,在0-100℃温度下搅拌降解。.方案的方法,其特征在于其中氧化剂为过氧化氢、二氧化氯、草酸、草酸钠、次氯酸、次氯酸钠、高碘酸、高氯酸及其相互之间不同比例的混用。本专利技术PACu-AS模板吸附控制长度/催化氧化裂解方法的工艺流程可简述为以0.5-1.0%的食用乙酸、柠檬酸、乳酸、酒石酸溶解高聚壳聚糖固体成为溶液,将化学合成并粉碎过筛的PACu-AS微粒搅拌下加入上述溶液中,调节pH值使壳聚糖中的氨基与PACu-AS颗粒表面裸露金属离子有弱配位键形成,室温加入氧化剂混合均匀,升温降解,过滤分离出降解液,低温本文档来自技高网...
【技术保护点】
PACu-AS吸附微波辅助降解制备窄分子量分布壳聚寡糖的方法,其特征是:以壳聚糖为基本母体,其可与模板基质表面金属离子在pH值5-7时配位,模板基质是指化学合成后经研磨粉化达到一定粒度的反式草酰胺/硫氰酸根桥连铜Ⅱ固体金属配位高聚物颗粒,简称:PACu-AS,通过PACu-AS表面金属离子之间的距离控制降解后壳聚寡糖的平均长度;PACu-AS的特点之一是弱酸性不溶解,之二是在pH值为4-7时表面金属离子可与壳聚糖中的氨基弱配位结合,将PACu-AS颗粒与溶于含0.5%醋酸溶液的生物甲壳素脱乙酰化后的高分子量壳聚糖室温混合,调节pH值为4-7,加入适量氧化剂,搅拌均匀,微波照射,启动催化氧化反应,维持该温度下搅拌0.5分钟-72小时;此条件下,在PACu-AS基质表面所有金属离子位置附近同时氧化裂解壳聚糖高分子链;PACu-AS表面各裸露金属离子之间的距离及均匀分布密度大小将决定降解后寡糖数均分子量的大小与分子量分布范围;由于所用PACu-AS为弱酸性不溶物,可通过过滤将产物与催化基质分离,方便稳定得到平均数均分子量为400-2500,分子量分布指数为1.02-1.10的壳聚寡糖产品,PACu-AS催化基质可反复使用。...
【技术特征摘要】
【专利技术属性】
技术研发人员:张岐,
申请(专利权)人:海南大学,
类型:发明
国别省市:66[中国|海南]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。